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Abstract

Structure-based drug design (SBDD), which aims
to generate molecules that can bind tightly to the
target protein, is an essential problem in drug dis-
covery, and previous approaches have achieved
initial success. However, most existing methods
still suffer from invalid local structure or unreal-
istic conformation issues, which are mainly due
to the poor leaning of bond angles or torsional
angles. To alleviate these problems, we propose
AUTODIFF, a diffusion-based fragment-wise au-
toregressive generation model. Specifically, we
design a novel molecule assembly strategy named
conformal motif that preserves the conformation
of local structures of molecules first, then we en-
code the interaction of the protein-ligand com-
plex with an SE(3)-equivariant convolutional
network and generate molecules motif-by-motif
with diffusion modeling. In addition, we also
improve the evaluation framework of SBDD by
constraining the molecular weights of the gener-
ated molecules in the same range, together with
some new metrics, which make the evaluation
more fair and practical. Extensive experiments on
CrossDocked2020 demonstrate that our approach
outperforms the existing models in generating re-
alistic molecules with valid structures and confor-
mations while maintaining high binding affinity.

1. Introduction
Structure-based drug design (SBDD), which can be formu-
lated as generating 3D molecules conditioned on protein
pockets, is an important and challenging task in drug discov-
ery (Bohacek et al., 1996). Compared to string-based (Bjer-
rum & Threlfall, 2017; Segler et al., 2018) and graph-
based (You et al., 2018; Jin et al., 2018; Shi et al., 2020;
Jin et al., 2020a) molecule generation, SBDD leverages the
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spatial geometric structure information and perceives how
molecule interacts with protein pocket. Therefore, it can
generate drug-like molecules with high binding affinities
to the target. Recently, we have witnessed the success of
deep generative models on this task, and most of the exist-
ing approaches can be roughly divided into two categories:
autoregressive-based and diffusion-based.

For autoregressive-based approaches, early attempts gener-
ated 3D molecules by estimating the probability density of
atoms’ occurrence in protein pocket and placing atoms of
specific types and locations one by one (Luo et al., 2021;
Liu et al., 2022). Subsequently, Peng et al. (2022) took the
modeling of chemical bonds into consideration and achieved
more practical atomic connections. However, atom-wise
autoregressive approaches always force the model to gen-
erate chemically invalid intermediaries (Jin et al., 2018),
yielding unrealistic fragments in the generated molecules.
To tackle this problem, fragment-wise autoregressive ap-
proaches (Zhang et al., 2022; Zhang & Liu, 2023) were
proposed, while these methods always suffer from error
accumulation due to the poor learning capacity of torsional
angle and the defective motif design strategy, which lead to
invalid local structures or unrealistic conformations.

For diffusion-based approaches, some learned the distribu-
tion of atom types and positions from a standard Gaussian
prior based on diffusion process (Guan et al., 2022; Lin
et al., 2022; Schneuing et al., 2022), and some introduced
the scaffold-arm decomposition prior into the diffusion
modeling to improve the binding affinity of the generated
molecules (Guan et al., 2023). However, diffusion-based
approaches also tend to generate unrealistic local structures
such as messy rings (Guan et al., 2023). In addition to
SBDD, diffusion models have also been widely used in
other biochemistry tasks such as molecule conformation
prediction (Jing et al., 2022) and ligand-protein binding
prediction (Corso et al., 2022; Lu et al., 2023), where diffu-
sion models show promising modeling capacity of torsional
angle.

To overcome the aforementioned challenges and limita-
tions, we leverage the strength of diffusion models and
motif-based autoregressive generation and propose AUTOD-
IFF, a novel conformal motif-based molecule generation
method with diffusion modeling. Different from previous
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approaches (Zhang et al., 2022), we propose a novel con-
formal motif design strategy, which can alleviate the invalid
structure and unrealistic conformation problems. In addi-
tion, we model the protein-ligand complex with an SE(3)-
equivariant convolutional network to learn the spatial ge-
ometric structure features and interaction information. At
each generation step, we predict a connection site which
can be either an atom or a bond for the current fragment
and the motif library, respectively, then attach two predicted
connection sites to form a new fragment, and the torsional
angle is predicted with a probabilistic diffusion model at
last. Thanks to the implicitly encoded conformation in
the conformal motifs, the connection site-based attachment
can perceive the local environment of the current pocket-
ligand complex, therefore alleviating the error accumulation
and generating more realistic molecules. Furthermore, we
also improve the evaluation framework by constraining the
molecular weights of the generated molecules in the same
range, together with some new metrics, which can evaluate
the structure validity and binding affinity more practically
than before.

To summarize, the main contributions of this paper are three-
fold:

• Assembly strategy: we propose a new motif design
strategy named conformal motif, which preserves all
conformation information of local structures.

• Generative method: we present a novel generation
framework which makes use of the advantages of dif-
fusion model and motif-based generation to design
realistic molecules.

• Experimental result: we improve the evaluation
framework together with some new metrics, with
which the SBDD models can be evaluated and com-
pared more fairly and practically.

2. Related Work
Fragment-Wise Molecule Generation. Fragment-wise
generation is prevalent since the chemical information is
preserved in the substructures to produce realistic molecules.
Jin et al. (2018) proposed a junction tree variational autoen-
coder for generating molecules with chemical motifs, it
constructs a tree-structured scaffold first, and then com-
bines the motifs of the tree into a molecule with a graph
message passing network. Jin et al. (2020b) designed a
multiple-property optimization approach in which the motif
vocabulary with good properties is constructed first, then
molecules are generated by expanding rationale graphs with
graph generative models and optimized by fine-tuning to
desirable properties with reinforcement learning models.
Recently, fragment-based 3D generation approaches have

shown promising capacity in drug design and lead optimiza-
tion (Flam-Shepherd et al., 2022; Powers et al., 2022; Zhang
et al., 2022; Zhang & Liu, 2023). Flam-Shepherd et al.
(2022) used a hierarchical agent to generate 3D molecules
guided by quantum mechanics with a reinforcement learning
framework in an autoregressive fashion. Powers et al. (2022)
learned how to attach fragments to a growing structure by
recognizing realistic intermediates generated en route to a
final ligand, which solved a 3D molecule optimization prob-
lem. For fragment-wise generation, the key is how to design
the motif that can encode the chemical information and lo-
cal topological structure appropriately. This is even more
important to structure-based drug design, which needs to
take the motif conformation into account to achieve realistic
3D structures.

Structure-Based Drug Design. Structure-based drug de-
sign (SBDD) generates target-aware molecules that bind to
specific protein pockets. Fu et al. (2022) proposed a vari-
ant of genetic algorithm guided by reinforcement learning,
which employs neural models to prioritize the profitable
drug design steps with protein structure information as in-
put. Ragoza et al. (2022) presented an atomic density grid
representation of protein-ligand complex and learned the
molecule distributions with a conditional variational autoen-
coder. Luo et al. (2021); Liu et al. (2022) generated 3D
molecules by estimating the probability density of atoms’
occurrence in protein pocket and placing atoms of specific
types and locations one by one. Peng et al. (2022) took the
modeling of chemical bonds into consideration and achieved
more practical atomic connections. Zhang et al. (2022);
Zhang & Liu (2023) proposed a fragment-wise framework
which generates molecules motif-by-motif. Another line
of work focuses on diffusion-based approaches. Lin et al.
(2022); Schneuing et al. (2022); Guan et al. (2022) learned
the distribution of atom types and positions from a standard
Gaussian prior based on the diffusion process. Guan et al.
(2023) decomposed ligands into arms and scaffolds, then
incorporated related prior knowledge into diffusion models
for better molecule generation.

Diffusion Models. Recently, diffusion models have at-
tracted considerable attention thanks to their promising
generative results, which have been widely used in com-
puter vision (Dhariwal & Nichol, 2021; Nichol et al., 2021;
Rombach et al., 2022; Ceylan et al., 2023; Tumanyan et al.,
2023), natural language processing (Li et al., 2022; Lovelace
et al., 2022; Yuan et al., 2022; Lin et al., 2023), and speech
modeling (Pascual et al., 2023; Guo et al., 2023), while
remarkable success also has been achieved in the domain of
biochemistry and drug design (Hoogeboom et al., 2022; Xu
et al., 2022b; Jing et al., 2022; Corso et al., 2022; Lu et al.,
2023). Jing et al. (2022) studied molecular conformation
generation, which operates on the space of torsional angles
via a diffusion process on the hypertorus and an extrinsic-to-

2



AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design

Algorithm 1 Conformal Motif Extraction (Section 3.2)
Input: A set of molecule graphs D = {G1,G2, ...,G|D|}
Output: Motif vocabularyW
Wr ← {},Wc∗ ← {}
for G(V, E) ∈ D do
WG = Disconnect(G,RG)
for F(VF , EF ) ∈ WG do

if IsFusedRing(F) then
Fr = Decompose(F)
Wr ←Wr ∪ Fr

else if IsChain(F) then
V∗
F ← VF ∪ {a|a ∈ V,∃b ∈ VF , (a, b) ∈ E}
E∗F ← {(a, b) ∈ E|a ∈ V∗

F , b ∈ V∗
F}

Wc∗ ←Wc∗ ∪ {F∗(V∗
F , E∗F )}

else
Wr ←Wr ∪ {F}

end if
end for

end for
W ←Wr ∪Wc∗

intrinsic score model. Hoogeboom et al. (2022) generated
3D molecules, which learns to denoise a diffusion process
with an equivariant network that jointly operates on both
atom coordinates and atom types.

3. Method
In this section, we present AUTODIFF, a diffusion-
based fragment-wise autoregressive generation model for
structure-based drug design. Firstly, we formulate the task
of structure-based drug design (SBDD) formally in Sec-
tion 3.1 and introduce conformal motif design strategy in
Section 3.2. Then, we elaborate on the generation process
based on the proposed conformal motif in Section 3.3. In
the end, we derive the optimization objective to train our
model in Section 3.4.

3.1. Problem Formulation

Structure-based drug design (SBDD) task can be formulated
as a conditional generation task that generates 3D molecules
conditioned on the given protein pocket. Specifically, the
protein pocket can be represented as a set of atoms (with co-
ordinates)P = {(aiP , riP )}

NP
i=1, while the drug molecule can

also be represented as a set of atoms G = {(aiG, riG)}
NG
i=1,

where NP and NG denotes the number of atoms in the
pocket and the molecule, respectively; ri ∈ R3 is the co-
ordinate of the i-th heavy atom. With the definitions, the
SBDD task can be re-formulated as learning a conditional
distribution p(G|P) from the co-crystallized (or docked) 3D
protein-ligand complex data.

3.2. Assembly: Conformal Motif

The motif-based generation is explored and applied in 2D
generation (Jin et al., 2018; 2020a;b; Fu et al., 2021) initially,
and has achieved decent performance especially compared
to atom-wise approaches. To construct motif vocabulary,
molecules in a library are decomposed into disconnected
fragments by breaking all the bridge bonds or rotatable
bonds that will not violate chemical validity, and fragments
with higher frequency than a threshold are selected as the
building blocks, i.e., motifs. This strategy was also em-
ployed in 3D generation (Flam-Shepherd et al., 2022; Pow-
ers et al., 2022) and SBDD (Zhang et al., 2022; Zhang &
Liu, 2023), while the results are not satisfied due to the
invalid structures and conformations generated in the sam-
pled molecules. The main reason is that the existing motif
design strategy is defective since it only encodes part of
the 3D topological information of local structures. Specifi-
cally, some 3D topological information of the surrounding
environment of atoms in severed bonds will be lost during
fragmentation, which leads to the annihilation of the correct
local conformation when motifs are attached to each other
and finally results in invalid structures or unrealistic confor-
mations, as shown in Figure 1. Motivated by the analysis
results, we propose a novel motif design strategy, i.e., con-
formal motif, in which the term “conformal” stems from
hydromechanics and geometry, while we refer to fully pre-
serving 3D topology information in our motifs. Concretely,
we first detach all freely rotatable bondsR (precise defini-
tions in Appendix B.1) to break molecules into fragments,
then we use redundant dummy atoms to act as placeholders,
which preserve the 3D topology information (mainly bond
angles) of the surrounding environment implicitly for atoms
of the severed bonds, and conformation of the motifs can be
recovered with cheminformatics tools such as RDKit (Bento
et al., 2020). Figure 1 shows that it avoids distorting local
structures and helps to generate molecules with realistic
structures and conformations. Furthermore, to explore more
possible conformation flexibly, we further decompose the
fused ring to reduce the motif size. The extracted conformal
motifs can be divided into two categories: ring-likeWr and
chain-like Wc∗. In view of the combination explosion of
adding dummy atoms onWr, we only add dummy atoms
onWc∗. Algorithm 1 shows the pseudo-code of the com-
plete process. We also provide an example in Appendix B.2.
To the best of our knowledge, conformal motif is the first
motif strategy designed for the SBDD task that takes full
conformation information into consideration.

3.3. Method: AUTODIFF

We first present the overall generation process of the pro-
posed AUTODIFF, together with some notion definitions in
Section 3.3.1; then we show the SE(3)-equivariant encoder
in Section 3.3.2, which is employed as the main architecture
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Figure 1. Illustration of the advantage of conformal motif (bottom)
versus other methods (Zhang et al., 2022; Zhang & Liu, 2023)
(top).

to model the protein pocket-ligand complex; finally, we in-
troduce each module from Section 3.3.3 to Section 3.3.5 in
detail. For ease of exposition, we list all the terminologies
and mathematical notations in Appendix A.

3.3.1. OVERVIEW OF AUTODIFF

Firstly, we will define some notions. A connection site is an
atom in a severed bond or a bond in a fused ring during motif
extraction. A candidate connection site is an atom or a bond
that may become a connection site during the generation
process. We denote all the candidate connection sites in
the intermediate G(t) or the motif vocabulary W as CCS,
while some atoms or bonds in CCS of W are chemically
equivalent and can be reduced to a simplified version, which
is called Reduced Candidate Connection Sites (RCCS). It
is worth noting that RCCS is the same as CCS in G(t). The
item selected from RCCS for attachment in each generation
step is termed as Focal Connection Site (FCS).

Overall, the process of which can be defined as follows:

G(t) = ϕ(P), t = 1, (1)

G(t) = ϕ(G(t−1),P), t > 1, (2)

where ϕ is our generation model. The generation of each
motif consists of four steps (Figure 2): (1) an FCS prediction
model is trained to predict the FCS in G(t−1); (2) another
FCS prediction model predicts the FCS inW , and the corre-
sponding motifW(t−1) is also determined simultaneously;
(3)W(t−1) will be attached to G(t−1) by connecting the two
FCSs; (4) learn the torsional angle with a diffusion-based
model. In this way, we get G(t) and the generation process
continues until no FCS in the current ligand fragment can be
found. Note that the generation of the first motif is different
from the procedure presented above and we will introduce
the details in Section 3.3.3.

3.3.2. CONTEXTUAL ENCODER

This section describes an SE(3)-equivariant convolutional
network-based encoder, which is employed as the main
architecture to model the protein pocket-ligand complex.

It is crucial to characterize the surrounding environmen-
tal information in the protein pocket for the SBDD task.
In our approach, complexes of protein pockets and ligand
fragments are collectively represented as heterogeneous
geometric graphs GH = (VH , EH), where the vertex set
VH = (Vl,Vp) is the collection of all the heavy atoms
of ligand fragment and protein pocket, while the edge
set EH = (Ell, Elp, Epl, Epp) is constructed by cutting off
the distance between atoms with thresholds of 5Å1, 10Å,
15Å for ligand-ligand, ligand-pocket/pocket-ligand, and
pocket-pocket atom pairs respectively. Unlike previous ap-
proaches (Peng et al., 2022; Zhang et al., 2022) that build
interaction graphs only depending on distance or k-nearest
neighbors, we also preserve all the covalent bonds in ligands
as edges to better model ligand-ligand atoms interactions.

SE(3)-equivariant convolutional networks based on ten-
sor products of irreducible representations of SO(3) are
used to encode GH . At each interaction layer, messages
are generated using a tensor product of spherical harmonic
representations of the edge vector and node representation.
Then, for each node i of type ca(ca ∈ {l, p}), it collects the
message from its connected edges and updates its represen-
tation, which can be formulated as:

hi ← hi ⊕
c∈{l,p}

BN(ca,c)

 1

|N (c)
i |

∑
j∈N (c)

i

Y (rij)⊗ψij
hj

 ,

(3)
where hi denotes node i’s representation, ⊕ denotes vec-
tor addition, ⊗ψij

denotes spherical tensor product with
weight ψij , BN is the equivariant batch normalization,
N (c)
i denotes neighbors of node i of type c. Y refer to

spherical harmonics, rij is the direction vector of edge eij ,
ψij = Ψ(hij ,hj ,hj) contains learnable weight of tensor
product, where hij denotes the embedding of eij , and hj
denotes scalar features of node i. Note that the interaction
layer contains three sublayers: two intra-interaction layers
on G = (Vl, Ell) and P = (Vp, Epp), one inter-interaction
layer on ((Vl,Vp), (Epl, Elp)).

3.3.3. GENERATE THE FIRST MOTIF

How to generate the first motif is crucial to achieving suc-
cessful generation, which consists of two steps: selection
of the motif and placement in the protein pocket. We first
train a model to predict the frontier in the pocket, which
is defined as the pocket atom closest to the first motif’s
centroid, and then a classifier is employed to predict the
motif by taking the predicted frontier as input. So far, we
have selected the first motif, while placing it in the pocket,
namely pose prediction, is quite challenging. Previous meth-
ods used contact map to predict the position for the first

1The units is Angstrom Å (10−10 m).
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Figure 2. Overview of the generation process of AUTODIFF. RCCS: Reduced Candidate Connection Site. FCS: Focal Connection Site.
Details are shown in Section 3.3.

motif (Zhang et al., 2022; Zhang & Liu, 2023), which tends
to predict implausible poses and mislead the whole genera-
tion process due to the inappropriate modeling of the motif
poses. To be specific, the same motif may have different
relative positions to the same pocket or subpocket in dif-
ferent complexes, while the contact map-based approaches
are forced to learn an average-like output from the training
data consisting of various alternative poses, thus usually
resulting in unrealistic molecule structures. In our approach,
we develop a diffusion-based generative model to learn the
distribution of various motif poses. Since there are no freely
rotatable bonds in the motif, the pose lies in a 6-dimensional
submanifold whose degree of freedom comes from transla-
tion and rotation. Therefore, we generate the conformation
of the selected motif by RDKit (Bento et al., 2020) first, and
a convolution of each motif atom with motif centroid o is
employed:

v =
1

|Vl|
∑
i∈Vl

Y (roi)⊗ψoi
hi, (4)

where ψoi = Ψ(hoi,hi). The output v consists of 2 odd
parity vectors and 2 even vectors. Translation and rotation
of the molecule are predicted as:

tr =
v̄odd
∥v̄odd∥

×MLP(∥v̄odd∥ , st) , (5)

rot =
v̄even
∥v̄even∥

×MLP(∥v̄even∥ , st) , (6)

where st denotes the sinusoidal embeddings of the diffusion
time t.

3.3.4. FCS PREDICTION

The key step for fragment-wise autoregressive generation
is selecting a motifW(t−1) and attaching it to the current
generated molecule G(t−1). Different from previous meth-
ods (Zhang et al., 2022; Zhang & Liu, 2023) that predict a
motif first and then select the appropriate attachment by enu-
meration and scoring, we predict a connection site directly

in the conformal motif vocabularyW , whileW(t−1) is de-
termined simultaneously. In this way, the motif is predicted
in a more fine-grained fashion, taking the atom-level con-
textual information into account. In the following, we will
elaborate on FCS prediction of G(t−1) andW , respectively.

FCS prediction of G(t−1). According to the definition in
Section 3.3.1, CCS for G(t−1) includes three parts: dummy
atoms in chains, atoms in rings that do not violate the chemi-
cal validity if connected to other heavy atoms, and chemical
bonds in rings that connect two candidate connection atoms.
Therefore, we train a model to predict the FCS from CCS
as follows:

Pvi = σ(MLP(hi)), (7)
Peu = σ(MLP([hi,hj ])), (vi, vj) ∈ eu. (8)

Note that edges are directed, and the predicted FCS can be
an atom vf or an edge ef .

FCS prediction of W . As defined in Section 3.3.1, the
construction of CCS forW is similar to G(t−1) which also
consists of three parts: dummy atoms in Wc∗, atoms in
Wr that do not violate the chemical validity if connected
to other heavy atoms, and bonds in Wr that connect two
candidate connection atoms. While some atoms or bonds
in CCS are equivalent, which means that their centered
neighbors of atoms and bonds are all the same, resulting
in the same graph generated by connecting them to G(t−1).
Therefore, equivalent atoms or bonds should be reduced
in case of inducing aleatoric uncertainty in generation. To
reduce the CCS into the RCCS, we first recognize equivalent
atoms and bonds. Specifically, we traverse all the atom pairs
(vi, vj) in a motif and define corresponding graph pairs
(GWi ,GWj ), which denote the motif graph centered in vi and
vj , In the graph pair, vi and vj are assigned with a special
label, while the other atoms and bonds are labeled with
their corresponding element type or bond type, respectively.
If the graph pairs (GWi ,GWj ) are proven to be isomorphic
under the graph isomorphism testing, the atoms vi and vj
are equivalent. On the basis of this, equivalent edges are
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determined by whether their connected atoms are equivalent,
in other words, eij ≡ emn ⇐⇒ (vi ≡ vm) ∧ (vj ≡
vn), where ≡ refers to equivalent. After recognizing the
equivalent connection sites, we reduce the CCS into the
RCCS. In the end, we use FCS in G(t−1) to query another
FCS inW , and employ two neural networks to make a query
vector Q and key vectors K. Specifically, FCS is predicted
by either of the following models:

Pv = softmax
v∈VW

(
MLPvQ([hĜ ,hvf ]) ·MLPvK(hv)

)
(9)

Pe = softmax
e∈EW

(
MLPeQ([hĜ ,hef ]) ·MLPeK(he)

)
(10)

where Ĝ = G(t−1). The type of FCS (atom or bond) is
determined to be consistent with FCS in G(t−1) to avoid
mismatched connection. Up to now, the motif to be attached
W(t−1) is also determined and the new molecule G(t) is
generated by attaching W(t−1) to G(t−1) on the FCSs of
both. To realize the conformation of G(t), we first represent
the conformation of G(t−1) as CG(t−1) , and sample a con-
formation of G(t) that denoted as ĈG(t) with RDKit (Bento
et al., 2020), then we use Kabsch algorithm (Kabsch, 1976)
to calculate the translation t and the rotation R that align
conformation of W(t−2) in ĈG(t) to the conformation of
W(t−2) in CG(t−1) . Let xil denote the position vector of
atom i inW(t−1), its position after attachment x̂il is calcu-
lated as:

x̂il = Rxil + t. (11)
It should be noted that there may be additional freedom if
the newly formed bond is rotatable, then the torsional angle
should be predicted, which will be introduced in the next
section.

3.3.5. TORSIONAL ANGLE PREDICTION

Torsional angle prediction is the last but important mod-
ule that determines the conformation of the generated
molecules, since bond lengths, bond angles and small rings
are essentially rigid, such that the flexibility of molecules
lies almost entirely in the torsional angles at rotatable bonds,
and it is also hard to learn due to the flexibility. Previous
approaches (Zhang et al., 2022; Zhang & Liu, 2023) predict
the change of the torsional angle with a regression model,
which tends to learn an average-like implausible output and
may lead to unrealistic conformation. Inspired by the results
achieved in (Jing et al., 2022), we propose a diffusion-based
model to characterize the distribution of torsional angles.
To be specific, for bond b, an SE(3)-invariant scalar repre-
senting torsional score Tb is generated by a convolution of
each atom with the bond center z:

Tb = MLP

(
1

|Nb|
∑
a∈Nb

Y (rza)⊗ Y 2(rb)⊗γza ha

)
,

(12)

where γza = Γ(hza,ha,hi+hj), (vi, vj ∈ eb), where eb is
the edge of bond b.

3.4. Training

In the training stage, we use binary cross-entropy loss Lfro
for the prediction of frontiers in pockets and cross-entropy
loss Lmot for the first motif prediction, while binary cross
entropy loss LCS is used for connection site prediction,
furthermore, Ltr, Lrot, LT are the losses for the transla-
tion, rotation of the first motif and torsion of rotatable bond
produced in generation. The total loss can be defined as
follows:

L = Lfro + Lmot + LCS + Ltr + Lrot + LT . (13)

We provide more implementation details in Appendix D.

4. Experiment
4.1. Experiment Setup

Dataset. In this paper, we train and evaluate our model
with the CrossDock2020 (Francoeur et al., 2020) dataset,
which contains 22.5 million poses of ligands docked into
multiple similar binding pockets across the Protein Data
Bank (Berman et al., 2000). In our experiments, the dataset
is processed with the same procedure to (Guan et al., 2023).

Baselines. We compare our model with various state-of-
the-art baselines: LiGAN (Ragoza et al., 2022) is a con-
ditional variational autoencoder-based generation model.
GraphBP (Liu et al., 2022), AR (Luo et al., 2021), and
Pocket2Mol (Peng et al., 2022) are atom-wise autoregres-
sive generation approaches. FLAG (Zhang et al., 2022)
generates molecules fragment-by-fragment in an autoregres-
sive fashion. TargetDiff (Guan et al., 2022) and Decom-
pDiff (Guan et al., 2023) are diffusion-based generation
methods.

Evaluation. To compare with the existing state-of-the-art
generation models more fairly and practically, we improve
the evaluation framework by constraining the molecular
weights of the generated molecules in the same range (de-
tailed in Appendix C), which is different from previous
evaluations since there is a strong correlation between Vina
Score and molecular weight (Xu et al., 2022a). Specifically,
we evaluate the generated molecules from three perspec-
tives: (1) molecular structure validity: we analyze the
atom distance and bond angle respectively first, by calcu-
lating the Jensen-Shannon divergences (JSD) between the
generated molecules and the reference set. In addition, we
also calculate the JSD between the generated molecules
and the force-filed optimized ones, which does not rely on
a specific reference set and achieves a more generalized
and realistic estimation. Furthermore, to evaluate the whole
structure comprehensively, we propose a new metric called
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Figure 3. Comparing the distribution for distances of all-atom (top
row) and carbon-carbon pairs (bottom row) for reference molecules
(gray) and model generated molecules (color). JSD between two
distributions is reported.

conformer RMSD, which is specified in Section 4.2. (2)
pharmaceutical properties: we choose the two most com-
monly used metrics which are also important reference indi-
cators for pharmaceutical chemists in practical development:
Synthetic Accessibility (SA) and Quantitative Estimation
of Drug-likeness (QED), which follow the setup of Guan
et al. (2023). (3) binding affinity: we also evaluate the
binding affinity of the generated molecules with AutoDock
Vina (Eberhardt et al., 2021). Following the setup of Guan
et al. (2023), we report both the mean and the median value
of four metrics: Vina Score, Vina Min, Vina Dock, and
High Affinity. Additionally, we propose another two met-
rics, i.e., Vina Score∗ and Vina Min∗, which are specified in
Section 4.3.

4.2. Molecular Structure Validity Analysis

Firstly, we evaluate the structure validity by analyzing the
distributions of all-atom distances and carbon-carbon pair
distances and comparing them against the corresponding ref-
erence empirical distributions in Figure 3. For overall atom
distances, AUTODIFF achieves the lowest JSD compared to
other autoregressive-based approaches and competitive per-
formance compared to diffusion-based approaches, which
are similar to the results of carbon-carbon pair distances sce-
nario. In addition, we compute the bond angle distributions
of the generated molecules and compare them against the
reference set (Table 1, top rows), and similarly, AUTOD-
IFF achieves comparable performance as well.

Nevertheless, the capacity of JSD computed against the
reference empirical distributions is limited to evaluate the
structure validity exactly, since it prefers molecules that are
structure-similar to the reference set, while not the ones that
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Figure 4. Conformer RMSD of the molecules sampled from differ-
ent models.

Table 1. JSD between bond angle distributions of the reference
and the generated molecules (top), and of the generated and the
force-field optimized molecules (bottom). The best two results are
highlighted with bold text and underlined text, respectively.

Angle Ref
li

GAN
Graph

BP AR
Pocket
2Mol

Target
Diff

Decomp
Diff FLAG Ours

CCC - 0.60 0.38 0.33 0.34 0.33 0.26 0.40 0.31
CCO - 0.64 0.31 0.45 0.40 0.38 0.29 0.44 0.27
CNC - 0.62 0.45 0.38 0.24 0.37 0.29 0.53 0.42
NCC - 0.63 0.32 0.40 0.36 0.35 0.25 0.44 0.32

CC=O - 0.65 0.36 0.48 0.36 0.36 0.25 0.45 0.30

CCC 0.14 0.49 0.23 0.32 0.31 0.36 0.38 0.31 0.22
CCO 0.20 0.62 0.31 0.47 0.43 0.44 0.43 0.40 0.24
CNC 0.20 0.46 0.25 0.31 0.29 0.28 0.31 0.29 0.23
NCC 0.20 0.52 0.20 0.37 0.34 0.34 0.35 0.32 0.25

CC=O 0.30 0.64 0.24 0.56 0.47 0.44 0.34 0.38 0.23

are dissimilar to the reference set but actually structure-valid.
Therefore, we propose to compute JSD of the generated
molecules against their force field optimized results rather
than the reference set, as the outputs of the force field are
generally considered to be approximate correct structures.
The new metric is more generalized and alleviates the bias
arose in the evaluation before. As shown in Table 1 (bottom
rows), AUTODIFF outperforms other baselines and achieves
the best performance, and the results of JSD are close to
the ones of the reference set, which means AUTODIFF is
capable of learning molecule structures with valid bond
angles.

To further evaluate the structure validity comprehensively
in addition to separate analysis of atom distances and bond
angles, we design another new metric conformer RMSD
inspired by the conformer matching (Jing et al., 2022): for
a molecule G we optimize its conformation CG by force-
field to obtain CFF

G , then we modify torsion angels of the
CFF

G to match CG . The optimal match (ĈFF
G , CG) can be
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Table 2. Results of binding affinities and pharmaceutical properties. Top 2 results are highlighted with bold text and underlined text,
respectively.

Methods Vina Score(↓) Vina Score∗(↓) Vina Min(↓) Vina Min∗(↓) Vina Dock(↓) High Affinity(↑) QED (↑) SA (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

Reference -6.36 -6.46 -5.65 -5.94 -6.71 -6.49 -6.32 -6.18 -7.45 -7.26 – – 0.48 0.47 0.73 0.74

LiGAN – – – – – – – – -8.49 -8.39 0.64 0.69 0.35 0.30 0.54 0.52
GraphBP – – – – – – – – -2.49 -3.96 0.10 0.03 0.49 0.50 0.49 0.49
AR -4.98 -6.40 -3.37 -4.23 -6.51 -6.76 -5.33 -5.53 -7.67 -7.40 0.58 0.69 0.47 0.46 0.56 0.55
Pocket2Mol -6.37 -6.56 -4.72 -4.88 -7.39 -7.54 -5.98 -6.26 -8.58 -8.63 0.68 0.79 0.54 0.54 0.71 0.71
FLAG 51.03 42.13 50.08 41.90 9.42 -2.23 8.63 -2.12 -5.49 -6.04 0.26 0.10 0.35 0.31 0.49 0.48
TargetDiff -5.83 -6.36 -2.64 -3.79 -6.87 -6.89 -4.50 -4.84 -7.85 -7.94 0.60 0.60 0.50 0.50 0.59 0.58
DecompDiff -3.76 -4.72 -2.33 -3.63 -5.29 -5.59 -4.34 -4.86 -7.03 -7.17 0.37 0.24 0.44 0.43 0.68 0.68
AUTODIFF -5.25 -5.33 -5.02 -5.18 -6.91 -7.06 -6.69 -6.83 -8.86 -8.94 0.73 0.77 0.57 0.58 0.76 0.77

Figure 5. Visualization of chemically implausible local structures
generated by TargetDiff, DecompDiff, FLAG. Incorrect bond an-
gles are marked by yellow circles (PDBID is 2Z3H).

found by running a differential evolution optimization pro-
cedure over the torsion angles, and RMSD(ĈFF

G , CG) is
defined as conformer RMSD. As shown in Figure 4, AU-
TODIFF achieves the lowest conformer RMSD compared to
all other baselines, which is also close to the result of the ref-
erence set. The result suggests that AUTODIFF can generate
molecules with more valid structures and conformations.

Case study. To better understand the structure validity, a
case study is conducted and reported in Figure 5. We can see
that FLAG tends to generate unrealistic structures, and Tar-
getDiff as well as DecompDiff generate approximate valid
structures but incorrect local details such as invalid bond an-
gles, while AUTODIFF can generate rational molecules with
more realistic structures and conformations, which can be
attributed to the superiority of the conformal motif strategy.

4.3. Binding Affinities and Pharmaceutical Properties

In accordance with practice, we evaluate the binding affinity
by computing Vina Score, Vina Min, Vina Dock and High

Affinity first. It should be noted that our experiments are
conducted under the constraint of molecular weights. In Ta-
ble 2, we can see that Pocket2Mol outperforms other models,
while AUTODIFF achieves competitive performance similar
to Pocket2Mol and is better than other baselines.

However, the metrics Vina Score and Vina Min are not ro-
bust enough since they do not take the structure validity into
account, which means molecules with unrealistic structures
may still achieve decent Vina scores. To address this issue,
we propose another two metrics, i.e., Vina Score∗ and Vina
Min∗, which compute Vina scores for the molecules that are
preprocessed with conformer matching (Jing et al., 2022)
rather than the ones generated by models. These two new
metrics can evaluate the binding affinity more practically
which ensure the approximate correctness of molecular lo-
cal structures and conformations (bond lengths and bond
angles). Table 2 shows that results of Vina Score∗ and Vina
Min∗ are worse than Vina Score and Vin Min for almost all
the models, which are reasonable since the metrics are more
strict than before due to taking structure validity into account
when docking, while we can see that AUTODIFF achieves
the best performance and the Vina score values also fall into
a good range. It is unexpected that Pocket2Mol acquires
the second-best results which are also very impressive. Fur-
thermore, AUTODIFF also obtains the highest QED and
SA scores. All the results again suggest that AUTODIFF is
suitable for SBDD task and it can generate more drug-like
molecules with good binding affinities.

5. Conclusion
In this paper, we propose AUTODIFF, a diffusion-based
fragment-wise autoregressive generation approach, which
can generate realistic molecules with valid structures and
conformations based on the conformal motif. Moreover, we
also improve the evaluation framework of SBDD, which
can benchmark the generation models fairly and practically.
In future work a fine-tuning module could be introduced to
refine the intermediates during generation.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
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J. Full-band general audio synthesis with score-based
diffusion. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5. IEEE, 2023.

Peng, X., Luo, S., Guan, J., Xie, Q., Peng, J., and Ma, J.
Pocket2mol: Efficient molecular sampling based on 3d
protein pockets. In International Conference on Machine
Learning, pp. 17644–17655. PMLR, 2022.

Powers, A. S., Yu, H. H., Suriana, P., and Dror, R. O.
Fragment-based ligand generation guided by geometric
deep learning on protein-ligand structure. bioRxiv, pp.
2022–03, 2022.

Ragoza, M., Masuda, T., and Koes, D. R. Generating 3d
molecules conditional on receptor binding sites with deep

generative models. Chemical science, 13(9):2701–2713,
2022.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Schneuing, A., Du, Y., Harris, C., Jamasb, A., Igashov, I.,
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A. Terminologies and notations
We list terminologies and notations in Table 3

Table 3. Terminologies and notations.

Notations Explanations
CCS candidate connection sites

RCCS reduced candidate connection sites
FCS focal connection site
P protein pocket
aiP the atom type of the i-th atom in protein pocket
riP the coordinate of the i-th heavy atom in protein pocket
G drug molecule (ligand)
aiG the atom type of the i-th atom in drug molecule
riG the coordinate of the i-th heavy atom in drug molecule
W motif vocabulary
Wr ring-like motif vocabulary
Wc∗ chain-like motif vocabulary
G(t) drug molecule after generating t motifs
ϕ generation model
GH GH = (VH , EH), heterogeneous geometric graphs
VH VH = (Vl,Vp), collection of all the heavy atoms of ligand fragment (l) and protein pocket (p)
EH edge set, EH = (Ell, Elp, Epl, Epp)
MLP multiple layer perceptron
hi node i’s representation
hi node i’s scalar features
Å Angstrom (10−10 m)
⊕ vector addition
⊗ψ spherical tensor product with weight ψ
BN batch normalization
N (c)
i neighbors of node i of type c in radius graphs.
ca atom type indicating whether the atom is in ligand or protein, ca ∈ {l, p}.
W(t) the added motif at the t-th iteration
R rotation matrix
|| · || l2 norm of a vector
Tb torsion score of bond b

B. Details in Conformal Motif Extraction
B.1. Definition of Freely Rotatable Bond

In this paper, the freely rotatable bond is defined as follows: if cutting a bond creates two connected components of the
molecule, and each connected component has at least one atom that is not in the direction of the severed bond, then the
bond is considered to be freely rotatable. We only count single bonds as rotatable. Different from previous definitions (Jing
et al., 2022; Zhang et al., 2022), our definition guarantees that a freely rotatable bond is chemically rotatable and changes
molecular conformation as it rotates.

B.2. Example of conformal motif extraction

In Figure 6, we provide an example of conformal motif extraction.
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freely rotatable bond ℛ disconnect ℛ further decomposition

conformal 
motifs

Figure 6. An example of conformal motif extraction, the symbol ‘*’ in motifs represents a dummy atom.

C. Details of Molecular Weight Constraint
By analysis we found that the molecular weights of molecules generated by different models always vary differently,
autoregressive-based approaches tend to generate small molecules in an atom-by-atom (or motif-by-motif) fashion, while
diffusion-based approaches generate molecules in a one-shot fashion, they determine the number of atoms before generation,
thus allowing for more flexible control of the molecular weight. Taking the correlation between vina score and molecular
weight into consideration, we constrain the molecular weights of the generated molecules in the same range to conduct a fair
evaluation. Considering the statistical number of generated molecules and the similar molecular weight distribution between
the molecules generated by TargetDiff and the reference set, for each testing protein pocket Pi, we drop the top 20% and the
bottom 20% of the molecules generated by TargetDiff according to the molecular weight and calculate the mean µi and
standard deviation σi of the remaining molecules. Then we define the valid molecular weight range Hi as [µi − σi, µi + σi].
For protein pocket Pi, only the molecules whose molecular weight fall in the range Hi will be evaluated.

For each model, 100 molecules are generated and sampled in the rangeHi, which are used to be evaluated in our experiments.
Table 4 shows the molecular weights of molecules generated by various SBDD models under default settings and the
molecular weight constraint settings.

Table 4. Molecular weights for various models under default settings (MolWt1) and the molecular weight constraint settings (MolWt2).

liGAN GraphBP AR Pocket2Mol FLAG TargetDiff DecompDiff AutoDiff

MolWt1 294.87±25.20 344.54±171.75 250.48±58.84 242.75±51.99 287.33±81.07 347.34±85.03 581.92±42.30 254.62±60.98
MolWt2 348.29±14.01 336.59±21.89 328.95±15.68 335.47±15.45 337.57±20.91 336.71±21.72 335.36±21.44 331.60±18.39

D. Implementation Details
For node features of molecules, we use atom symbol, formal charge, number of explicit Hs, number of total Hs, and
hybridization type. For node features of protein atoms, we use element types, the amino acids they belong to, and whether
they are backbone or side-chain atoms. Edge features include the distances encoded with radial basis functions and bond
type. The input scalar features of nodes and edges are concatenated with sinusoidal embeddings of diffusion time.

In the training stage, we first construct motif trees of molecules, then we traverse motif trees in a breadth-first (BFS) order
to get a traverse sequence S. We sample a mask ratio from the uniform distribution U[0, 1] and mask the corresponding
number of the last K motifs in S. Connection sites are determined during the masking procedure.
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