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Abstract

Therapeutics Data Commons (tdcommons.ai) is an open science initiative with
unified datasets, Al models, and benchmarks to support research across therapeu-
tic modalities and drug discovery and development stages. The Commons 2.0
(TDC-2) is a comprehensive overhaul of Therapeutic Data Commons to catalyze
research in multimodal models for drug discovery by unifying single-cell biology
of diseases, biochemistry of molecules, and effects of drugs through multimodal
datasets, Al-powered API endpoints, new multimodal tasks and model frameworks,
and comprehensive benchmarks. TDC-2 introduces over 1,000 multimodal datasets
spanning approximately 85 million cells, pre-calculated embeddings from 5 state-
of-the-art single-cell models, and a biomedical knowledge graph. TDC-2 drastically
expands the coverage of ML tasks across therapeutic pipelines and 10+ new modal-
ities, spanning but not limited to single-cell gene expression data, clinical trial data,
peptide sequence data, peptidomimetics protein-peptide interaction data regarding
newly discovered ligands derived from AS-MS spectroscopy, novel 3D structural
data for proteins, and cell-type-specific protein-protein interaction networks at
single-cell resolution. TDC-2 introduces multimodal data access under an API-first
design using the model-view-controller paradigm. TDC-2 introduces 7 novel ML
tasks with fine-grained biological contexts: contextualized drug-target identifica-
tion, single-cell chemical/genetic perturbation response prediction, protein-peptide
binding affinity prediction task, and clinical trial outcome prediction task, which
introduce antigen-processing-pathway-specific, cell-type-specific, peptide-specific,
and patient-specific biological contexts. TDC-2 also releases benchmarks evaluat-
ing 15+ state-of-the-art models across 5+ new learning tasks evaluating models on
diverse biological contexts and sampling approaches. Among these, TDC-2 pro-
vides the first benchmark for context-specific learning. TDC-2, to our knowledge,
is also the first to introduce a protein-peptide binding interaction benchmark.

1 Introduction

Biomedical machine learning (ML) faces challenges in developing versatile models that support a
broad range of tasks in the realm of out-of-distribution (OOD) generalization [23,24], and multimodal
models that can incorporate effects of drugs, often organic molecules (chemistry), their interactions
with proteins (targets) that trigger perturbations of biological pathways (networks) and produce
phenotypic effects that can be measured in, for example, cell-based assays (single cells) before
delivery to clinics (patients) [25]. These challenges are compounded by the lack of unified datasets
organized across these five levels of increasing complexity based on the steps of drug discovery.
Therapeutics Data Commons (TDC-1) [} 26] addresses these challenges by providing a unified
platform that consolidates therapeutic datasets, Al models, and benchmarks and facilitates a holistic
approach to multimodal model development and evaluation, to facilitate algorithmic and scientific
advances in therapeutics. TDC-1 had over 145,000 PyPI package installations and datasets, which
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Figure 1: Overview of TDC-2. TDC-2 introduces an API-first Multimodal Retrieval API powering
ML-task-driven [[1]] datasets [12, 13,4} 5L16, 7,18, 19,110} 11]and benchmarks spanning 10+ new modalities
and 5 broad state-of-the-art machine learning tasks (7 total detailed in Section . The API-first
design of TDC-2, built on the Model-View-Controller MVC) [12,13}114] (Section paradigm and
a Domain-Specific Language (DSL) [13] (Section [3.2)), unifies diverse data sources and modalities
and is essential to enable integration of TDC-2 with LLMs and foundation models [[L6, [17} [18].
Model benchmarks highlighting biomedical Al challenges in OOD Generalization [19] 20, 21} [8]] and
evaluation [3} 22] of cell-type-specific contextual Al models are introduced.

achieved over 350,000 downloads, demonstrating TDC’s impact on research and development for
machine learning models in therapeutics.

Models capable of accurate out-of-distribution predictions promise to expand to the vast molecular
space, whose size is estimated at 10° potential drug-like molecules [27]], yet less than 10° of those
are FDA-approved drugs [28)], suggesting the potential for advanced computational methods to
navigate the molecular space and help find, generate and optimize candidate drugs. Further, handling
multimodal data is essential for building foundation models that accurately capture the complex
interactions within biological systems [29], which is vital for understanding disease mechanisms
and discovering effective treatments. Further, the need for API-first data access and toolified ML
models stems from the demand for flexible, scalable, and accessible models that can integrate into
emerging tool-based LLMs [30} [16] and agentic workflows [31]]. TDC-2 takes on these challenges
by introducing a multimodal retrieval API with an API-first-dataset model. This new feature allows
TDC-2 to enhance LLM workflows with capabilities such as: continual learning 30\ (17, 31]], dynamic
contextual learning [16} [17]], and integration with agents [17, 30]].

Due to the inherent complexity and diversity of biomedical data, existing datasets and benchmarking
efforts in drug discovery often fail to address these challenges. Benchmarks tailored to measuring
the effectiveness of models at out-of-distribution predictions are rare for several key biological
tasks [32]]. Most dataset and benchmark providers also struggle to evaluate models using longitudinal
data [8]] and real-world evidence [9]] due to challenges in continual data collection [33]. API
integration for research workflows presents challenges in data standardization and harmonization [34]],
reproducibility and reliability [35]], and scalability and performance [36]. Many platforms focus
on specific types of data or stages of the drug development process, lacking the comprehensive
framework to develop benchmarks [37] and robust evaluation metrics [38]].

Present work. The Commons 2.0 (TDC-2) aims to catalyze research in multimodal models and
foundation models by integrating data, ML tasks, and benchmarks across five levels of chemistry,
targets, networks, single cells, and patients. This is achieved under an API-first approach with a
fine-tuning paradigm. TDC-2 (Figure [I)) provides multimodal datasets, state-of-the-art pre-calculated
embeddings, a comprehensive biomedical knowledge graph, and API endpoints. TDC-2 distinguishes
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itself by introducing an API-first [39} 40] framework that unifies data sources through a Model-
View-Controller (MVC) [12] paradigm and a Domain-Specific Language (DSL) [15]. TDC-2
presents 7 novel ML tasks with fine-grained biological contexts. Three tasks introduce cell-type-
specific biological context: drug-target identification [3] and chemical/genetic perturbation response
prediction [19} 20]. TDC-2 introduces a protein-peptide binding affinity prediction task [9] and
clinical trial outcome prediction task [8], providing tasks across antigen-processing-pathway contexts,
cell type contexts, and patient contexts.

TDC-2 is designed to support ML research in some of the most pressing challenges, including but not
limited to cell-type-specific ML modeling [3l], inferential gap in precision medicine [41], negative-
sampling challenges in peptidomimetics [22]], and OOD generalization in perturbations [42, 43]].
TDC-2 is focused on providing functionality to support therapeutic foundation model research. Last,
exposing TDC-2 services through RESTful and RPC APIs implemented on web serves and packaged
containers can help tool-based LLM systems leverage TDC-2 more effectively.

2 Related Work

TDC-1, related benchmarks, and therapeutic initiatives. Therapeutics Data Commons (TDC-1)
was the first unifying platform providing systematic access and evaluation for machine learning
across the entire range of therapeutics [1]. TDC-1 included 66 Al-ready datasets in the Harvard
Dataverse [44]. These datasets were spread across 22 learning tasks, spanning the discovery and
development of safe and effective medicines. TDC-1 also provided an ecosystem of tools and
community resources, including 33 data functions and types of meaningful data splits, 23 strategies
for systematic model evaluation, 17 molecule generation oracles, and 29 public leaderboards. TDC-2
augmented the biomedical modalities covered by TDC-1 data, tasks, and benchmarks to lay the
foundations for building and evaluating foundation models. The Commons (TDC-2) distinguishes
itself from related datasets [43,46], benchmarks [47} 48} 149/|50], model development frameworks [51}
52], and therapeutic initiatives [S3]] in its more extensive coverage of relevant and robust therapeutic
datasets, benchmarks, pipelines, and modalities. It also distinguishes itself via an API-first, unified
platform approach to data and model retrieval, harmonization, and development.

Emerging area of foundation models. TDC-2 supports various prediction and generative tasks by
providing curated datasets, benchmarks, and leaderboards. Additionally, recent advancements in
LLM agents, such as Toolformer [30] ChatNT [54], GeneGPT [55], Gorilla [16], ToolLLM [56],
CRAFT [57], and RestGPT [58]] showcase the potential of integrating API tools to allow these systems
to call external functions and APIs. Models like AlphaFold [29], Evo [59]], and ESM [60] highlight
the complementary nature of sequence- and structure-based approaches. Integrating multimodal
learning approaches may be essential in capturing the full complexity of gene function [61]. The
API-first [40, 39} 162] approach adopted by TDC-2’s multimodal retrieval API enables seamless
integration of extensive resources with advanced models, accelerating the development of therapeutic
foundation models.

3 TDC-2’s Multimodal Datasets and Model Retrieval API

3.1 Overview of TDC-2

The Commons 2.0 (TDC-2) integrates single-cell biology of diseases, biochemistry of molecules, and
drug effects through an extensive array of multimodal datasets, Al-powered API endpoints, innovative
multimodal tasks and model frameworks, and comprehensive benchmarks.

New modalities. TDC-2 introduces over 1,000 multimodal datasets covering approximately 85
million cells [S3]]. These datasets include pre-calculated embeddings from five state-of-the-art
machine learning models, large-scale single-cell atlases and datasets, and a biomedical knowledge
graph detailing 17,080 diseases and 4,050,249 relationships [63]]. TDC-2 broadens the scope of
machine learning tasks across therapeutic pipelines and more than 10 new modalities. These include
single-cell gene expression data, clinical trial data, peptide sequence data, peptidomimetics protein-
peptide interaction data from AS-MS spectroscopy, novel 3D structural protein data, and cell-type-
specific protein-protein interaction networks at single-cell resolution. These tasks encompass datasets
with 32 CRISPR perturbations, nine drug-based perturbations, and drug-target interaction data for
two diseases across 156 cell-type-specific contexts.
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Innovative API-first-dataset design. The API-first design of TDC-2, built on the Model-View-
Controller (MVC) [12] paradigm and a Domain-Specific Language (DSL) [[L5], unifies diverse data
sources and modalities. The API-first-dataset design is essential to enable integration of TDC-2
with LLMs for in-context learning [[16} 17, 18], facilitating dynamic data access, ensuring real-time
updates, and enhancing the accuracy and relevance of responses.

Novel ML tasks and therapeutic pipelines. TDC-2 introduces three new learning tasks focusing on
cell-type-specific biological contexts, drug-target identification [3]], and prediction of responses to
chemical and genetic perturbations [20,|19}/42]. TDC-2 is the first renowned multimodal open-source
dataset and benchmark provider to introduce a protein-peptide binding affinity prediction task [9]] and
a precision-medicine-oriented clinical trial outcome prediction task [8].

Benchmarking and model evaluation. TDC-2 provides benchmarks for over 15 state-of-the-art
models across more than five new learning tasks. These are tailored to take on some of the most
pressing machine learning challenges in biomedicine, including but not limited to cell-type-specific
machine learning modeling and evaluation [3], the inferential gap in precision medicine [41]], negative-
sampling challenges in peptidomimetics [22]], and out-of-distribution model generalizability across
unseen cell lines and perturbations [42, 143]].

Al-powered endpoints. Through The Commons’ Model Hub and CZ CellXGene [53], TDC-2 offers
API endpoints with multimodal retrieval capabilities. These endpoints provide access to protein
embeddings under specific biological contexts and model predictions.

3.2 TDC-2 Model-View-Controller Design

TDC-2 drastically expands dataset retrieval capabilities available in TDC-1 beyond those of other
leading benchmarks. Leading benchmarks, like MoleculeNet [46]] and TorchDrug [47] have tradi-
tionally provided dataloaders to access file dumps. TDC-2 introduces API-integrated multimodal
data-views [12} 164} [14]. The software architecture of TDC-2 was redesigned using the Model-
View-Controller (MVC) design pattern [[13 65] (Section [3;21) The MVC architecture separates
the model (data logic), view (UI logic), and controller (input logic), which allows for the integra-
tion of heterogeneous data sources and ensures consistency in data views [12]. The MVC pattern
supports the integration of multiple data modalities by using data mappings and views [[14]. The
MV C-enabled-multimodal retrieval API is powered by TDC-2’s Resource Model (Section [3.3).

TDC DataLoader (Model). Per the TDC-1 specification, this component queries the underlying data
source to provide raw or processed data to upstream function calls. We augmented this component
beyond TDC-1 functionality to allow for querying datasets introduced in TDC-2, such as the CZ
CellXGene.

TDC meaningful data splits and multimodal data processing (View). Per the TDC-1 specification,
this component implements data splits to evaluate model generalizability to out-of-distribution
samples and data processing functions for multiple modalities. We augmented this component to act
on data views [12] specified by TDC-2’s controller.

TDC-2 Domain-Specific Language (Controller). TDC-2 develops an Application-Embedded
Domain-Specific Data Definition Programming Language facilitating the integration of multiple
modalities by generating data views from a mapping of various datasets and functions for transforma-
tions, integration, and multimodal enhancements while maintaining a high level of abstraction [15]
for the Resource framework. We include examples of developing multimodal datasets leveraging this
MVC DSL in Appendix[A.2.1]

3.3 TDC-2 Resource Model

The Commons introduces a redesign of TDC-1’s dataset layer into a new data model dubbed the TDC-
2 resource, developed under the MVC paradigm to integrate multiple modalities into the API-first
model of TDC-2.

CZ CellIXGene with single-cell biology datasets. CZ CellXGene [53] is an open-source platform
for single-cell RNA sequencing data analysis. We leverage the CZ CellXGene to develop a TDC-2
Resource Model for constructing large-scale single-cell datasets that maps gene expression profiles
of individual cells across tissues, healthy and disease states. TDC-2 leverages the SOMA (Stack of
Matrices, Annotated) API, adopts TileDB-SOMA [66] for modeling sets of 2D annotated matrices
with measurements of features across observations and enables memory-efficient querying of single-
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cell modalities (i.e., SCRNA-seq, snRNA-seq), across healthy and diseased samples, with tabular
annotations of cells, samples, and patients the samples come from.

We develop a remote procedure call (RPC) API taking the string name (e.g., Appendix [A.2.2) of the
desired reference dataset as specified in the CellXGene [53]]. The remote procedure call for fetching
data is defined as a Python generator expression, allowing the user to iterate over the constructed
single-cell atlas without loading it into memory [67]]. Specifying the RPC as a Python generator
expression allows us to use memory-efficient querying as provided by TileDB [66]. The single-cell
datasets can be integrated with therapeutics ML workflows in TDC-2 using tools such as PyTorch’s
IterableDataset module [[68]].

Knowledge graph, external APIs, and model hub. We have developed a framework for biomedical
knowledge graphs to enhance the multimodality of dataset retrieval via TDC-2’s Resource Model.
Our system leverages PrimeKG to integrate 20 high-quality resources to describe 17,080 diseases
with 4,050,249 relationships [63]. Our framework also extends to external APIs, with data views
currently leveraging BioPython [69], for obtaining nucleotide sequence information for a given
non-coding RNA ID from NCBI [69], and The Uniprot Consortium’s RESTful GET API [70] for
obtaining amino acid sequences. In addition, we’ve developed a framework that allows access to
embedding models under diverse biological contexts via the TDC-2 Model Hub. Examples using

these components are in Appendix

4 TDC-2 Tasks, Datasets, and Benchmarks with Results

TDC-2 drastically expands TDC-1’s ML tasks and benchmarks across pipelines and modalities. It
presents novel contextualized learning tasks at single-cell resolution, including drug-target identifi-
cation and counterfactual predictions for drug and CRISPR-based interventions. It also introduces
peptide-based tasks, including protein-peptide and TCR-epitope binding affinity prediction tasks. The
complete formulation of tasks, including datasets and benchmark results, is included in the Appendix.
We introduce clinical trial outcome prediction and structure-based drug design, both formulated in

Appendix [A.3.4A4]

4.1 TDC.scDTI: Contextualized Drug-Target Identification

Motivation. Single-cell data have enabled the study of gene expression and function at the level of
individual cells across healthy and disease states [71,153,161]]. To facilitate biological discoveries using
single-cell data, machine-learning models have been developed to capture the complex, cell-type-
specific behavior of genes [[72, 73|74} 3]]. In addition to providing the single-cell measurements and
foundation models, TDC-2 supports the development of contextual Al models to nominate therapeutic
targets in a cell type-specific manner [3|]. We introduce a benchmark dataset, model, and leaderboard
for context-specific therapeutic target prioritization, encouraging the innovation of model architectures
(e.g., to incorporate new modalities, such as protein structure and sequences [[75, 76\ 77, (78} [79]],
genetic perturbation data [80, 81, 182, I83]], disease-specific single-cell atlases [84} [85) |86], and
protein networks [87, 188 189]]). TDC-2’s release of TDC. scDTI is a significant step in standardizing
benchmarks for more comprehensive assessments of context-specific model performance.

Task definition: Contextualized drug-target identification. The goal is to train a model fq for
predicting the probability §j € [0, 1] that a protein is a candidate therapeutic target in a specific cell
type. The model learns an estimator for a function of a protein target t € T and a cell-type-specific
biological context c € C as input, and the model is tasked to predict: § = fo(t € T,c € C).

Dataset and benchmark. We use curated therapeutic target labels from the Open Targets Platform [4]
for rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) [3]]. Further details on the
composition of this dataset are in Appendix[A.3.1] We benchmark PINNACLE [3]—trained on cell
type specific protein-protein interaction networks—and a graph attention neural network (GAT) [90]—
trained on a context-free reference protein-protein interaction network—on the curated therapeutic
targets dataset. As expected, PINNACLE underperforms when evaluated on context-agnostic metrics
(Table|l) and drastically outperforms GAT when evaluated on context-specific metrics (Appendix
Table[T). Appendix [A.3.T]shares further evidence the most predictive cell type contexts identified by
PINNACLE are most relevant to each disease [3] (Appendix Figure [2)).
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Table 1: Cell-type specific target nomination for 2 therapeutic areas, rheumatoid arthritis and
inflammatory bowel disease. Cell-type specific context metrics: APR@5 Top-20 CT - average
precision and recall at £ = 5 for the 20 best-performing cell types (CT); AUROC Top-1 CT - AUROC
for top-performing cell type; AUROC Top-10 CT and AUROC Top-20 CT - weighted average
AUROC for top-10 and top-20 performing cell types, respectively, each weighted by the number of
samples in each cell type; APR@5/AUROC CF - context-free APR@5/AUROC integrated across all
cell types. Shown are results from models run on ten independent seeds. N/A - not applicable.

Model | APR@5 Top-20 CT | AUROC Top-1 CT | AUROC Top-10 CT | AUROC Top-20 CT || APR@5 CF | AUROC CF
PINNACLE (RA) 0.913+0.059 0.765+0.054 0.676+0.017 0.647+0.014 0.226+0.023 | 0.510+0.005
GAT (RA) N/A N/A N/A N/A 0.220+0.013 | 0.580=+0.010
PINNACLE (IBD) 0.873+0.069 0.935-+0.067 0.799-+0.017 0.752+0.011 0.198+0.013 0.500-+0.010
GAT (IBD) N/A N/A N/A N/A 0.200+0.023 | 0.640+0.017

To our knowledge, TDC-2 provides the first benchmark for context-specific learning [91]]. TDC-2’s
contribution helps standardize the evaluation of single-cell ML models for drug target identification
and other single-cell tasks [74 (72, 3, 73]

4.2 TDC.PerturbOutcome: Perturbation-Response Prediction

Motivation. Predicting gene expression responses to genetic or chemical perturbations is crucial
in systems biology and precision medicine. This task involves forecasting the changes in gene
expression profiles in response to specific perturbations applied to a biological system, such as gene
knockouts, knockdowns, overexpression, or chemical treatments. Despite advancements in model
development for perturbation outcome prediction, generalizing to unseen perturbations and cell lines
remains a challenge in predicting gene expression responses. While several innovative approaches,
such as deep generative models [92] [43], compositional autoencoders [21]], and active learning
and sequential design [93]], have been proposed, they each have limitations. Most models cannot
generalize to perturbations that were not seen during model training.

While models like GEARS [19] and chemCPA [20] showed great promise in generalizing to unseen
perturbations, they do not generalize to unseen cell lines. Furthermore, both GEARS and chemCPA
are limited to genetic and chemical perturbations, respectively. While approaches like PerturbNet [43]]
and Biolord [42] can generalize across chemical and genetic perturbations, they still struggle to
generalize across cell lines and biological contexts. Without modifications, Biolord is unable to
generalize to unseen perturbations. TDC-2 takes on this challenge by introducing a model framework,
task definition, and a benchmark for the Perturbation-Response Prediction task to enable ML research
in foundation models for comprehensive in silico perturbation modeling across biological contexts,
chemical and genetic perturbations, and seen and unseen perturbations.

Task definition: Perturbation-response prediction. The Perturbation-Response Prediction learning
task is to learn a regression model fy estimating the perturbation-response gene expression vector
€1 for a perturbation applied in a cell-type-specific biological context to a control. The model
learns an estimator for a function taking control cell gene expression €) € Ey, a perturbation
p € . Their cell-type-specific biological context ¢ € C, and the model is tasked to generate:
€1 = fo(pePéy € Ey,ceC).

Dataset and benchmark. In TDC-2, we’ve used the scPerturb [2]] datasets to benchmark the
Perturbation-response prediction model generalizability across seen/unseen perturbations and cell
lines. We benchmark models in genetic and chemical perturbations using metrics measuring
intra/inter-cell line and seen/unseen perturbation generalizability. We provide results measuring
unseen perturbation generalizability for Gene Perturbation Response Prediction using the scPerturb
gene datasets (Norman K562, Replogle K562, Replogle RPE1). For Chemical Perturbation Prediction,
we’ve evaluated chemCPA utilizing cold splits on perturbation type and show a significant decrease
in performance for 3 of 4 perturbations evaluated. We’ve also included Biolord [42] and scGen [92]]
for comparison. These tests were run on sciPlex2 [2].

Genetic perturbation response prediction. Results for different scenarios are in Appendix

Chemical perturbation response prediction. The dataset used was 4 drug-based perturbations from
sciPlex2 [2] (BMS, Dex, Nutlin, SAHA). Results are shown in Table [2]and Figure[3] chemCPA’s
performance dropped by an average of 15% across the 4 perturbations. The maximum drop was 34%.
Code for intra/inter cell-line benchmarks for chemical (drug) and genetic (CRISPR) perturbations is
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Table 2: We’ve evaluated chemCPA utilizing cold splits on perturbation type and show a significant
decrease in performance for 3 of 4 perturbations evaluated. We’ve also included Biolord [42] and
scGen [92] for comparison. The dataset used was 4 chemical (drug) perturbations from sciPlex2 [2]].

Drug ‘ Method ‘ R? (seen perturbations) ‘ R? (unseen perturbations)
BMS Baseline 0.62040.044 N/A
Dex Baseline 0.6034-0.053 N/A
Nutlin Baseline 0.6284-0.036 N/A
SAHA Baseline 0.61740.027 N/A
BMS Biolord 0.939+0.022 N/A
Dex Biolord 0.9424-0.028 N/A
Nutlin Biolord 0.9284-0.026 N/A
SAHA Biolord 0.980-+0.005 N/A
BMS ChemCPA 0.943+0.006 0.906+0.006
Dex ChemCPA 0.882+0.014 0.540+0.013
Nutlin | ChemCPA 0.925+0.010 0.835+0.009
SAHA | ChemCPA 0.825+0.026 0.690-+0.021
BMS scGen 0.903+0.030 N/A
Dex scGen 0.94440.018 N/A
Nutlin scGen 0.89140.032 N/A
SAHA scGen 0.94840.034 N/A

in Appendix and Appendix respectively. Using this code, users can evaluate models of their
choice on the benchmark and submit them to the TDC-2 leaderboards for this task (Appendix [B.2).

4.3 TDC.ProteinPeptide: Protein-Peptide Interaction Prediction

Motivation. Protein-peptide interactions differ significantly from protein-protein interactions. Pre-
dicting binding affinity for peptides is more complex than for proteins due to their flexibility and
ability to adopt multiple conformations [94}[95]]. High-quality binding affinity data for protein-protein
interactions are more readily available than for protein-peptide interactions [96]. The heterogeneity
of peptides also leads to a diverse range of binding modes and affinities [32]]. Predictive models
for protein-peptide interactions must consider peptide flexibility and sequence variability, leading
to more complex and computationally intensive approaches [97]]. Evaluating protein-peptide bind-
ing prediction models requires standardized benchmarks, presenting challenges in assessing and
validating model performance across different studies [32].

Despite the availability of several benchmarks for protein-protein interactions, this is not the case for
protein-peptide binding affinity prediction. The renowned multi-task benchmark for Protein sEquence
undERstanding (PEER) [49] and MoleculeNet [46] both lack support for a protein-peptide binding
affinity prediction task. MoleculeNet defines a single general Protein-Ligand binding affinity task,
which TDC-2 also includes, and is limited in its supported data modalities [S]]. Approaches relying
solely on the sequence and structural data tend not to be as accurate in applications (i.e.,., predicting the
affinity of peptides to MHC class II [98]]) those integrating additional modalities, such as information
about prior steps in the biological antigen presentation pathway [99]]. Furthermore, protein-peptide
binding mechanisms vary wildly by cellular and biological context [100} (101} [102} [103]. SoTA
models, as such, tend to be restricted to one task instance (i.e., T Cell Receptor (TCR) and Peptide-
MHC Complex or B Cell Receptor (BCR) and Antigen Peptides binding) and don’t span protein-
peptide interactions [[104} 105} 1106, 107,108, 109} [110]].

TDC-2 introduces a model framework, task definition, datasets, and benchmarks for the Protein-
Peptide Interaction Prediction task. It evaluates the model’s generalizability to newly discovered
peptides and highlights negative sampling challenges.

Task definition: Protein-peptide interaction prediction. The Protein-Peptide Interaction Prediction
learning task is to learn a binary classification model fy estimating the probability, v, of a protein-
peptide interaction meeting specific biomarkers. The model learns an estimator for a function taking
a target protein p € P, a peptide candidate s € S, an antigen processing pathway profile a € A, an
interaction set i € 1, and a cell-type-specific biological context ¢ € C as inputs, and the model is
tasked to predict: § = fo(p € P,s € S,a € Aji € I,c € C).
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Table 3: TCR-epitope binding interaction binary classification performance. All models perform
poorly under realistic but challenging RN and ET experimental setups. The best-performing model in
RN is AVIB-TCR, with an average of 0.576 (AUROC). The best-performing model in ET is MIX-TPI,
with an average of 0.700 (AUROC). For NA, 4 of 6 models achieve near-perfect AUROC.

Methods | Experimental setup |  ACC F1 AUROC AUPRC

AVIB-TCR RN 0.570+0.028  0.468+0.086  0.57640.049  0.60540.044
MIX-TPI RN 0.53940.039 0.408+0.122  0.55840.028  0.597+0.049
Net-TCR2 RN 0.528+0.050  0.354+0.036  0.551+0.042  0.55440.075
PanPep RN 0.507+0.028  0.47340.039  0.535+0.021  0.57940.040
TEINet RN 0.459+0.036  0.619+0.036  0.53540.029  0.58140.043
TITAN RN 0.47640.063 0.338+0.111  0.50240.066 0.523+0.055
AVIB-TCR ET 0.61140.012  0.553+0.020 0.683+0.010 0.815+0.006
MIX-TPI ET 0.65240.009 0.523+0.035 0.7034+0.016 0.825+0.014
Net-TCR2 ET 0.62140.027 0.522+0.020 0.674+0.017 0.810+0.016
PanPep ET 0.556+0.009  0.50640.011  0.638+0.000  0.75340.009
TEINet ET 0.35640.008 0.512+0.010  0.5714+0.009 0.64640.011
TITAN ET 0.67040.013  0.492+0.048 0.62440.021 0.733+0.018
AVIB-TCR NA 0.63640.062 0.197+0.169 0.94440.021 0.949+0.023
MIX-TPI NA 0.95240.029  0.937+0.040  0.99240.002  0.99540.001
Net-TCR2 NA 0.65540.051 0.274+0.123  0.97340.009 0.985+0.005
PanPep NA 0.419+0.011  0.352+0.006  0.61140.014  0.499+40.031
TEINet NA 0.41340.023 0.582+0.023 0.973+0.011  0.981+0.006
TITAN NA 0.695+0.050  0.404+0.141  0.62940.053  0.66140.040

4.3.1 Datasets and Benchmarks

TCR-Epitope (Peptide-MHC Complex) interaction prediction. The critical challenge in TCR-
Epitope (Peptide-MHC Complex) Interaction Prediction lies in creating a model that can effectively
generalize to unseen TCRs and epitopes [L11]]. While TCR-H [112] and TEINet [113]] have shown
improved performance on prediction for known epitopes, by incorporating advanced features like
attention mechanisms and transfer learning, the performance significantly drops for unseen epi-
topes [114,[115]. Another challenge in TCR-Epitope Interaction Prediction lies in the choice of
method for negative sampling, with non-binders often underrepresented or biased in curated datasets,
leading to inaccurate predictions when generalized [22].

TDC-2 establishes a curated dataset and benchmark within its Protein-Peptide Binding Affinity
prediction task to take on both model generalizability to unseen TCRs and epitopes and model
sensitivity to negative sampling methodology. Benchmarking datasets use three types of negative
sampling methods: random shuffling of epitope and TCR sequences (RN), experimental negatives
(NA), and pairing external TCR sequences with epitope sequences (ET). We harness data from
the TC-hard dataset [7]] for the first two types and PanPep [6] for the third type. Both datasets
use hard [[7] splits, ensuring that epitopes in the testing set are not present in the training set. Our
results (Table|3)) show the lack of a reasonable negative sampling method, with model performance
evaluation shown to be unsatisfactory. For two sampling methods, all models perform poorly. The
best-performing model in ET is MIX-TPI, with roughly 0.70 AUROC. The best-performing model in
RN is AVIB-TCR, with approximately 0.576 AUROC. For NA, 4 of 6 models perform near-perfectly
as measured on AUROC.

Models benchmarked include AVIB-TCR [116], MIX-TPI [117], Net-TCR2 [118]], PanPep [111],
TEINet [113], and TITAN [115]. Results are available in Table[3]

AS-MS data for newly discovered ligands - Protein-peptide binding affinity prediction. To
benchmark future generalized protein-peptide models for this task, we use affinity selection-mass

spectrometry data which identified ligands binding to single biomolecular targets (MDM?2, ACE2,
Anti-HA 12CAS5) [11919]. Further details on this dataset are included in the Appendix [A.3.3]

4.4 Other New ML Tasks Introduced in TDC-2: TDC.TrialOutcome and TDC.SBDD

Clinical trial outcome prediction. TDC-2 introduces a model framework, task definition, dataset,
and benchmark for the Clinical Outcome Prediction task tailored to precision medicine. The frame-
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work and definition aim to assess clinical trials systematically and comprehensively by predicting
various endpoints for patient sub-populations. Our benchmark uses the Trial Outcome Prediction
(TOP) dataset [8]. TOP consists of 17,538 clinical trials with 13,880 small-molecule drugs and 5,335
diseases. We include the task formulation and dataset details in the Appendix. Benchmark details are
in Appendix[A.3.4] Code for reproducing experiments can be found in Appendix [A.3.4]

Structure-based drug design tasks. Structure-based drug design aims to create diverse new
molecules that bind to protein pockets (3D structures) and have favorable chemical properties.
These attributes are evaluated using pharmaceutically-relevant oracle functions. In this task, an ML
model learns molecular traits of protein pockets from a comprehensive dataset of protein-ligand pairs.
Subsequently, potential new molecules can be generated using the acquired conditional distribution.
The generated molecules must exhibit outstanding properties, including high binding effectiveness
and structural variety. They must meet other user-specified criteria, such as the feasibility of syn-
thesis (synthesizability/designability) and similarity to known drugs. Our task consists of multiple
components, which we formulate in the Appendix. We detail datasets [5, [10, 11]] in Appendix[A.4]

5 Conclusion

TDC-2 introduces an API-first architecture for maximal compatibility with tool-based LLMs and
agents, such as [30} [16} [120] and many other emerging systems. It does so via the development
of a multimodal data and model retrieval API leveraging the Model-View-Controller [12} (65} [13]]
paradigm to introduce data views [[14] and a domain-specific-language [15].

TDC-2 drastically expands the modalities and therapeutic pipelines previously available on TDC-
1 [1;126]. TDC-2 supports a far larger set of data modalities and ML tasks than other datasets [S3]]
and benchmarks [47, 48149, 46]. Modalities in TDC-2 include but are not limited to: single-cell gene
expression atlases [53) [71]], chemical and genetic perturbations [2], clinical trial data [8]], peptide
sequence data [7, 6], peptidomimetics protein-peptide interaction data from AS-MS spectroscopy [9,
119], novel 3D structural protein data [5,[11,[10], and cell-type-specific protein-protein interaction
networks at single-cell resolution [3]. TDC-2 introduces ML tasks taking on open challenges,
including the inferential gap in precision medicine [121 |41]], model generalizability across cell
lines [[19} 142]] and single-cell perturbations [20] that were not encountered during model training, and
evaluation of models across a broad range of diverse biological contexts [3} [22].
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A Technical Appendix

This technical appendix provides a detailed overview of the design, tasks, and benchmarks introduced
by TDC-2. We also refer to materials in Section [C] Supplementary Information, throughout the
technical appendix.

A.1 TDC-2 Multimodal Retrieval Use Cases

We focus on the use case of an ML researcher who wishes to train a model on a large-scale single-
cell atlas. In particular, researchers would be familiar with and have trained models on traditional
single-cell datasets such as Tabula Sapiens [71]. Their interest is to scale a model by training it on a
more extensive single-cell atlas based on this reference dataset. We build such an API. Specifically,
given a reference dataset available in CellXGene Discover [53]], we allow the user to perform a
memory-efficient query using TileDB-SOMA to expand the reference dataset to include cell entries
with non-zero readouts for any of the genes present in the reference dataset. This allows users to
build large-scale single-cell atlases on familiar reference datasets. The example below illustrates
how a user may construct a large-scale atlas with Tabula Sapiens as the reference dataset. Other
use cases include augmenting datasets using knowledge graphs and cell-type-specific biomedical
contexts. These capabilities are all powered by the MVC (Section[3.2)) and DSL (Section[A2.T|and

Section[3.2).
A.2 TDC-2 Design and Code Supporting Materials

All code and documentation can be found in our Github repo. The URL is https://github
.com/mims-harvard/TDC/tree/main. In addition, our website contains all datasets and licenses
and further documentation https://tdcommons.ai/\

A.2.1 DSL Implementation Examples

from .config import DatasetConfig
from ..feature_generators.protein_feature_generator import
> ProteinFeatureGenerator

class BrownProteinPeptideConfig(DatasetConfig):
"""Configuration for the brown-protein-peptide datasets”"""

def __init__(self):
super (BrownProteinPeptideConfig, self).__
dataset_name="brown_mdm2_ace2_12cab",
data_processing_class=ProteinFeatureGenerator,
functions_to_run=[
"autofill_identifier", "create_range",
< insert_protein_sequence"

init__(

n

]’
args_for_functions=[{
"autofill_column": "Name",
"key_column": "Sequence",
oA
"column": "KD,(nM)",
"keys": ["Putative binder"],
"subs": [0]
oA
"gene_column": "Protein Target"
.
var_map={
"X1": "Sequence",
"X2": "protein_or_rna_sequence",

lIIDlII . IlNaInell
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"ID2": "Protein Target",
3,

The above configuration augments a protein-peptide dataset with an additional modality, amino
acid sequence, and invokes numerous data processing functions tailored to the specific needs of the
underlying dataset.

A.2.2 CellXGene Code Samples

We focus on the use case of an ML researcher who wishes to train a model on a large-scale single-cell
atlas. In particular, researchers would be familiar with and would have trained models on traditional
single-cell datasets such as Tabula Sapiens [71]. Their interest is to scale a model by training it on a
more extensive single-cell atlas based on this reference dataset. We build such an API. Specifically,
given a reference dataset available in CellXGene Discover [53]], we allow the user to perform a
memory-efficient query using TileDB-SOMA to expand the reference dataset to include cell entries
with non-zero readouts for any of the genes present in the reference dataset. This allows users to
build large-scale single-cell atlases on familiar reference datasets. The example below illustrates how
a user may construct a large-scale atlas with Tabula Sapiens as the reference dataset.

from tdc.multi_pred.single_cell import CellXGene

dataloader = CellXGene(name="Tabula Sapiens - A1l ,Cells")

gen = dataloader.get_data(
value_filter="tissue ==, ,’brain’ and sex == ,’male’"

)

df = next(gen)

In addition to our TDC-2 Datal.oader API implementation for the CellXGene RPC API, we provide a
wrapper over the CellXGene Census Discovery API, which allows users to perform remote procedure
calls to fetch Cell Census data in more machine-learning-friendly formats like Pandas and Scipy.
We also maintain support for the AnnData format. Users can query Cell Census counts as well as
metadata using this API. The code sample below illustrates such usage.

from tdc.resource import cellxgene_census

# initialize Census Resource and query filters

resource = cellxgene_census.CensusResource()
cell_value_filter = "tissue == ,’brain’ and sex ==_’male’"
cell_column_names = ["assay", "cell_type", "tissue"]

# Obtaining cell metadata from the cellxzgene census in pandas format
obsdf = resource.get_cell_metadata(

value_filter=cell_value_filter,

column_names=cell_column_names,

fmt="pandas")

A.2.3 PrimeKG Knowledge Graph

PrimeKG supports drug-disease prediction by including an abundance of ’indications,” ’contra-
dictions’, and ’off-label use’ edges, which are usually missing in other knowledge graphs. We
accompany PrimeKG’s graph structure with text descriptions of clinical guidelines for drugs and
diseases to enable multimodal analyses [63]]. The code below depicts an example use case of the
TDC-2 PrimeKG API, where, combined with the networkx module, a user may retrieve a set of
proteins a drug interacts with.

import networkx as nx
from tdc.resource import PrimeKG

# Load the PrimeKG data
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kg = PrimeKG()
data = kg.get_data()
data = datal[data["relation"].str.contains("drug")]

# Create a graph from the knowledge graph data
G = nx.from_pandas_edgelist(data, ’x_id’, ’y_name’, edge_attr=’relation’)

# Exzample function to find repositioning opportunities for a given drug
def find_repositioning_opportunities(drug):
neighbors = 1ist(G.neighbors(drug))
diseases = [node for node in neighbors if G[drug] [node][’relation’] ==’
— drug_protein’]
return diseases

# Find repositioning opportunities for a specific drug
drug_name = ’DB00945’
repositioning_opportunities = find_repositioning_opportunities(drug_name)

A.2.4 The Commons 2.0’s HuggingFace Model Hub

TDC-2 introduces The Commons’ HuggingFace Model Hub. It is a resource with pre-trained
models, including geometric deep learning models, large language models, and other contextualized
multimodal models for therapeutic tasks. The models can be fine-tuned using datasets in TDC-2 and
be used for downstream tasks such as implementations of multi-agent collaborative schemes [31]]
(i.e., expert consultants).

from tdc import tdc_hf_interface

tdc_hf = tdc_hf_interface("BBB_Martins-AttentiveFP")

# load deeppurpose model from this repo

dp_model = tdc_hf.load_deeppurpose(’./data’)
tdc_hf.predict_deeppurpose(dp_model, [’YOUR_ SMILES, ,STRING’])

A.3 Task Definitions and Benchmark Results

Here, we provide details of mathematical formulation, definitions, and benchmark results for all new
tasks. Complete derivations are available in Section [C| Section[C|also contains complete descriptions
for all datasets across these tasks.

A.3.1 Contextualized Drug Target Identification Task Formulation

For complete mathematical formulation of the drug-target nomination (identification) task in TDC-2,
please see Section|[C.2.1] Section[C.2.T]also contains complete dataset descriptions.

We created a curated dataset for benchmarking models on single-cell drug-target identification by
replicating the methodology used for evaluating PINNACLE [3]]. We used curated therapeutic target
labels from the Open Targets Platform [3, 4] for rheumatoid arthritis (RA) and inflammatory bowel
disease (IBD). Positive examples were defined by proteins targeted by drugs that have at least
completed phase 2 of clinical trials. The final number of positive (negative) samples for RA and
IBD were 152 (1,465) and 114 (1,377), respectively. This dataset was augmented to include 156
cell-type-specific contexts.

Section [B.T| and Section [B.T] for cell-type-specific metrics evaluated across 10 seeds. For bench-
marking across ten seeds and another model benchmark, see Appendix [B.1] For pre-training, the
best hyperparameters are as follows: the dimension of the nodes’ feature matrix = 1024, dimension
of the output layer = 16, lambda = 0.1, learning rate for link prediction task = 0.01, learning
rate for protein’s cell type classification task = 0.1, number of attention heads = 8, weight decay
rate = 0.00001, dropout rate = 0.6, and normalization layers are layernorm and batchnorm. For
pre-training, models are trained on a single NVIDIA Tesla V100-SXM2-16GB GPU.
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Figure 2: Performance of contextualized target prioritization for RA and IBD therapeutic areas.
(a,d) Model performance (measured by APR@5) for RA and IBD therapeutic areas, respectively.
APR@K (or Average Precision and Recall at K) is a combination of Precision@K and Recall@K
(refer to Methods 6 [3]] for more details). Each dot is the performance (averaged across ten random
seeds) of PINNACLE’s protein representations from a specific cell type context. The gray and dark
orange lines represent the performance of the global reference network model and the BIONIC
models, respectively. For each therapeutic area, 22 cell types are annotated and colored by their
compartment category. Supplementary Figure S2 contains model performance measured by APR@10,
APR@15, and APR@20 for RA and IBD therapeutic areas. (b-c, e-f) Selected proteins for RA
and IBD therapeutic areas. The dotted line separates the top and bottom five cell types. (b-c) Two
selected proteins, JAK3 and IL6R, are targeted by drugs that have completed Phase IV clinical trials
for treating RA therapeutic areas. (e-f) Two selected proteins, ITGA4 and PPARG, are targeted by
drugs that have completed Phase IV for treating the therapeutic area of IBD.

Hyperparameters are used for fine-tuning, as per the Github documentation. Models are trained on a
single NVIDIA Tesla M40 GPU.

The following function calls are as documented in Section[B.1]

# Rheumatoid Arthritis (EF0_0000685)
python train.py \
--task_name=EF0_0000685 \
--embeddings_dir=../data/pinnacle_embeds/ \
--positive_proteins_prefix ../data/therapeutic_target_task/
— positive_proteins_EF0_0000685 \
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--negative_proteins_prefix ../data/therapeutic_target_task/
— negative_proteins_EF0_0000685 \

--data_split_path ../data/therapeutic_target_task/data_split_EF0_0000685
=\

--actn=relu \

--dropout=0.2 \

--hidden_dim_1=32 \

--hidden_dim_2=8 \

--1r=0.01 \

--norm=bn \

--order=dn \

--wd=0.001 \

--random_state 1 \

--num_epoch=2000

# Inflammatory bowel disease (EF0_0003767)
python train.py \

--task_name=EF0_0003767 \

--embeddings_dir=../data/pinnacle_embeds/ \

--positive_proteins_prefix ../data/therapeutic_target_task/
— positive_proteins_EF0_0003767 \

--negative_proteins_prefix ../data/therapeutic_target_task/
— negative_proteins_EF0_0003767 \

--data_split_path ../data/therapeutic_target_task/data_split_EF0_0003767
— \

--actn=relu \

--dropout=0.4 \

--hidden_dim_1=32 \

--hidden_dim_2=8 \

--1r=0.001 \

--norm=1n \

--order=nd \

--wd=0.0001 \

--random_state 1 \

--num_epoch=2000

A.3.2 Perturbation-Response Problem Formulation

TDC-2 introduces the Contextualized Perturbation-Response Prediction task. The predictive, non-
generative task is formalized as learning an estimator for a function of the cell-type-specific gene
expression response to a chemical or genetic perturbation, taking a perturbation p € P, a pre-
perturbation gene expression profile from the control set ey € Ey, and the biological context ¢ € C
under which the gene expression response to the perturbation is measured as:

e_i :f(pve_éac)' (1)

We center our definition on regression for the cell-type-specific gene expression vector in response to
a chemical or genetic perturbation.

Perturbation set. The perturbation set includes genetic and chemical perturbations. It is denoted by:

]P:{ph"'apr}a (2)

where t,, ..., pn, are IV, evaluated perturbations. Data representation models for genetic perturba-
tions can include the type of perturbation (i.e., knockout, knockdown, overexpression) and target
gene(s) of the perturbation. Information modeled for chemical perturbations can include chemical
structure (i.e., SMILES, InChl) and concentration and duration of treatment.

Control set. The control set includes the unperturbed gene expression profiles. This set is denoted as:

B = {@,,-- &N, } 3)
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Figure 3: R-squared of chemical perturbation predictions across models and drug types. We
include results for chemCPA when tested for unseen perturbation. The performance of chemCPA
dropped significantly for Dex, Nutlin, and SAHA.

where €, , ..., € N., are N, unperturbed gene expression profile vectors. Data representation models
for gene expression profiles include raw or normalized gene expression counts, transcriptomic profiles,
and isoform-specific expression levels.

Biological context set. The biological context set includes the cell-type-specific contexts under
which the perturbed gene expression profile is measured. It is denoted by:

C:{clv"'ach}a (4)

where ¢y, ..., cy, are the IV, biological contexts under which perturbations are being evaluated.
Information modeled for biological contexts can include cell type or tissue type and experimental
conditions [2]] as well as epigenetic markers [[122} [123]].

Perturbation-response readouts. Perturbation-Response is a gene expression vector €1, where €7
denotes the expression of the i-th gene in the vector. It is the outcome of applying a perturbation,
p; € P, within a biological context, c¢; € C, to a cell with a measured control gene expression vector,
eo, € K.

The Perturbation-Response Prediction learning task is to learn a regression model fy estimating the

perturbation-response gene expression vector ¢; for a perturbation applied in a cell-type-specific
biological context to a control:

eiing(pEP,e_(')G]Ey,CEC). (5)

Benchmarking genetic perturbations. All benchmarked methods follow the training procedure
described in [[19]. Specifically, we use the simulation data split to mimic the real-world use case of
genetic perturbation machine learning models. For the Norman double combination perturbation
dataset, we withhold perturbations that are either both unseen, one unseen, or both seen in the test set.
For the Replogle K562 and RPE1 single perturbation datasets, we split the data by single genes and
test on unseen single-gene perturbations. The hyperparameters used were optimal after optimization
as reported in [[19]. Each model run was executed on an internal high-performance cluster with an
Ubuntu 16.04 operating system, using a single Nvidia Quadro RTX 8000 48GB GPU. The code to
reproduce the experiment is available at https://github.com/mims-harvard/TDC/tree/main
/examples/multi_pred/geneperturb|and results at https://docs.google.com/spreadsh
eets/d/1ZRONBsJasCgtytz_btIdORRmIwbMmtGGlrWyDMgBKwM/edit7usp=sharing,

Benchmarking chemical perturbations. Benchmark results can be reproduced with code in
Default settings were used from each model’s github repo and the experiments were run in
A100. Below is code chemical and genetic perturbation benchmarking tooling available in TDC-2.
https://tdcommons.ai/benchmark/counterfactual_group/overview/|https://github
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.com/mims-harvard/TDC/blob/main/tdc/benchmark_group/counterfactual_group.py
https://github.com/mims-harvard/TDC/blob/main/tdc/benchmark_group/genepertu

rb_group.py
A.3.3 Protein-Peptide Interaction Prediction Problem Formulation

TDC-2 introduces the Protein-Peptide Binding Affinity Prediction task. The predictive, non-generative
task is to learn a model estimating a function of a protein, peptide, antigen processing pathway,
biological context, and interaction features. It outputs a binding affinity value (e.g., dissociation
constant Kd, Gibbs free energy AG) or binary label indicating strong or weak binding. The binary
label can also include additional biomarkers, such as allowing for a positive label if and only if the
binding interaction is specific [9} 124, [125]. Our task is specified with a binary label to account for
additional biomarkers beyond binding affinity value.

Protein set. The protein set includes target proteins. It is denoted by:

]P):{pla"'apr}v (6)

where p1, ..., pn, are N, target proteins. Information modeled for proteins can include sequence,
structural, or post-translational modification data.

Peptide set. The control set includes the peptide candidates. This set is denoted as:

82{817"'751\/5}7 @)

where s1, . .., sy, are Vg candidate peptides. Information modeled for candidate peptides can include
sequence, structural, and physicochemical data.

Antigen processing pathway set. The antigen processing pathway set includes antigen processing
pathway profile information about prior steps in the biological antigen presentation pathway processes.
It is denoted by:

A:{ala"'vaNa}7 (8)
where a1, ..., an, are the N, antigen processing pathway profiles modeled. Information modeled
in a profile can include proteasomal cleavage sites [126], classification into viral, bacterial, and
self-protein sources and endogenous vs exogenous processing pathway [99} 127, 110l [128]], and
target/receptor-specific pathway attributes such as transporter associated with antigen processing
(TAP) affinity [129], and endosomal/lysosomal processing efficiency [130].

Interaction set. It contains the interaction feature profiles. The set is denoted by:

T={ir,....in,}, ©)

where i1, ...,¢y, are the IV; interaction feature profiles. Information modeled in an interaction
feature profile can include contact maps [[131,(97} 1132} 133]], distance maps [97, [134]], electrostatic
interactions [[131]], and hydrogen bonds [131]].

Cell-type-specific biological context set. It contains the interaction feature profiles. The set is
denoted by:

C={c1,...,en.}, (10)
where cy, ..., cn, are the N, cell-type-specific biological contexts under which the protein-peptide
interaction is being evaluated. Information modeled in the cell-type-specific biological context can
include transcriptomic and proteomic data. We note, however, that, to our knowledge, single-cell
transcriptomic and proteomic data has yet to be used in protein-peptide binding affinity prediction,
outlining a promising avenue of research in developing machine learning models for peptide-based
therapeutics.

Protein-peptide interaction. It is defined as a binary label, y € {1,0}, where y = 1 indicates a
protein-peptide pair met the target biomarkers and y = 0 indicates the pair did not meet the target
biomarkers.

The Protein-Peptide Interaction Prediction learning task is to learn a binary classification model fy
estimating the probability, ¢, of a protein-peptide interaction meeting specific biomarkers:

J=folpeP,seS,acAieclceC). (11)

The models for TCR-epitope binding prediction were run on a single A100. We prepared the input data
files in the format (most in CSV files) according to the official tutorials. Unknown amino acid letters
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Figure 4: AUROC for TCR-Epitope Binding Interaction Binary Classification model performance
across negative sampling methods.

were replaced by X or removed according to the method requirements. If CDR3A and CDR3B are
available, the models will be trained on both unless they can only accept one TCR sequence as input
(such as TITAN). If CDR3A is unavailable (ET data), all the models will be trained in the beta-only
module. We kept the default parameters to run all the methods. For running TITAN, we transferred the
amino acid sequences of epitopes to the SMILE sequences as the inputs. To keep the unseen scenario,
we used a zero-shot module of PanPep in the tests of all the data settings. The code for reproducing our
benchmark results is in Section[B.1I] The code for our data split and benchmarks tooling is available
at. https://github.com/mims-harvard/TDC/blob/main/tdc/benchmark_group/tcrep
itope_group.py https://tdcommons.ai/benchmark/proteinpeptide_group/overview/
https://tdcommons.ai/multi_pred_tasks/tcrepitope/

AS-MS Data for newly discovered ligands - Protein-Peptide Binding Affinity Prediction

To benchmark future generalized protein-peptide models for this task, we use affinity selection-mass
spectrometry data which identified ligands binding to single biomolecular targets (MDM?2, ACE2,
12ca5) [119L9]. This dataset contains affinity selection-mass spectrometry data of discovered ligands
against single biomolecular targets. Several ligands identified through AS-MS were further tested
for binding affinity (KD) using biolayer interferometry (BLI) to the listed target protein. If labeled
as a "putative binder," AS-MS alone was used to isolate the ligands, with a requirement of KD < 1
uM, often confirmed in other assays but with some (< 50%) chance of nonspecific binding. Most
of the ligands are putative binders, totaling 4446. Among those characterized by BLI (only 34), the
average KD is 266 + 44 nM, and the median KD is 9.4 nM. We anticipate this new dataset will
help bridge the gap between novel experimental chemistry results and computational protein-peptide
binding affinity prediction, aiding in establishing model generalizability for benchmarks. A limitation
of the standalone dataset is the lack of several modalities mentioned in the problem formulation.
Furthermore, this dataset will be augmented using the TDC-2 MVC.
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Table 4: SOTA TCR-Epitope Binding Interaction Binary Classification model AUROC performance
across negative sampling methods.

Model | NA AUROC | ET AUROC | RN AUROC
Titan 0.629 0.624 0.481
AVIB-TCR 0.962 0.683 0.567
MIX-TPI 0.989 0.703 0.559
TEINET 0.973 0.571 0.609
NetTCR2 0.991 0.674 0.552
PanPep 0.611 0.674 0.535

Table 5: TCR-Epitope Binding Interaction Binary Classification model performance across negative
sampling methods.

Methods \ Setting \ ACC F1 AUROC AUPRC

AVIB-TCR ET 0.611+0.012 0.553+0.020 0.683+0.010 0.815+0.006
MIX-TPI ET 0.652+0.009 0.523+0.035 0.703+0.016 0.825+0.014
Net-TCR2 ET 0.621+0.027 0.522+0.020 0.674+0.017 0.810=+0.016
PanPep ET 0.556+0.009 0.506+0.011  0.638+0.009 0.75340.009
TEINet ET 0.356+0.008 0.512+0010 0.571+0.009 0.646+0.011
TITAN ET 0.670+0.013  0.492+0048 0.624+0.021 0.733+0.018
AVIB-TCR NA 0.636+0062 0.197+0.169 0.944+0021 0.949+0.023
MIX-TPI NA 0.952+0.029 0.937+0.040 0.992+0.002 0.995+0.001
Net-TCR2 NA 0.655+0.051  0.274+0.123  0.973+0.009 0.985+0.005
PanPep NA 0.419+0.011  0.352+0.006 0.611+0014 0.499+0.031
TEINet NA 0.413+0.023 0.582+0023 0.973+0.011  0.981+0.006
TITAN NA 0.695+0.050 0.404+0.141 0.629+0.053 0.661+0.040
AVIB-TCR RN 0.570+0.028 0.468+0.086 0.576+0.049 0.605+0.044
MIX-TPI RN 0.539+0.039 0.408+0.122  0.558+0.028 0.597+0.049
Net-TCR2 RN 0.528+0.050 0.354+003 0.551+0.042 0.554+0.075
PanPep RN 0.507+0.028 0.47340.039 0.535+0.021  0.57940.040
TEINet RN 0.459+0.036 0.619+0036 0.535+0020 0.581+0.043
TITAN RN 0.476+0.063 0.338+0.111  0.502+0.066 0.523+0.055

A.3.4 Clinical Trial Outcome Prediction Problem Formulation

The Clinical Trial Outcome Prediction task is formulated as a binary classification problem, where the
machine learning model predicts whether a clinical trial will have a positive or negative outcome. It is
a function that takes patient data, trial design, treatment characteristics, disease, and macro variables
as inputs and outputs a trial outcome prediction, a binary indicator of trial success (1) or failure (0).

Patient set. The patient set includes one or multiple patient sub-populations, with the extreme case
representing personalization. It is denoted as follows:

]P:{pla"'apr}a (12)

where p1,...,py, are N, patient sub-populations in this trial. The TOP benchmark [8]] dataset
represents patient data as part of the trial eligibility criteria. Patient data can include demographics
[[L35L 136k (137, 138} [139], baseline health metrics [[138),[139, [140], and medical history [[135} 136,
137, 1138} [139].

Trial design set. The trial design set includes the trial design profiles for this clinical trial. It is
denoted as:

D= {di,...,dn,}, (13)
where dy, ..., dn, are Ny eligible trial design profiles for this clinical trial. Trial design profiles can
model information including phase of the trial [8]], number of participants, duration of the trial, trial
eligibility criteria [8]], and randomization and blinding methods [141} 142, [143].

Treatment set. The treatment set includes the candidate treatments for the trial. It is denoted as:
T={t1,...,tn,}, (14)
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where ¢1,...,ty, are N; candidate treatments for the clinical trial. The information modeled
for treatments can include type of treatment (drug [8, [144], device [145, 146l [147], procedure
(148l 1490 150} [1511 [152]), dosage and administration route [[141} [140} [153]], mechanism of action
[154,1155,1156]], pre-clinical and early-phase trial results [[155) 140,157, [158]].

Macro context set. The macro context set contains the configurations of macro variables relevant to
the clinical trial. It is denoted as:

(CZ{Cl,...,CNc}, (15)

where ¢y, ..., cn, are N, configurations containing the values for macro variables relevant to the
trial, which can include geography [159, (155} 158l [160] and regulatory considerations [[155 [159].

Trial outcome. The trial outcome is a binary label y € {1,0}, where y = 1 indicates the trial met
their primary endpoints, while 0 means failing to meet with the primary endpoints.

The learning task is to learn a model fy for predicting the trial success probability ¢, where ¢ € [0, 1]:

9= fo(peP,deD,teT,ceC). (16)

A.3.5 Dataset and Benchmark

Our benchmark uses the Trial Outcome Prediction (TOP) dataset [8]. TOP consists of 17,538 clinical
trials with 13,880 small-molecule drugs and 5,335 diseases. Out of these trials, 9,999 (57.0%)
succeeded (i.e., meeting primary endpoints), and 7,539 (43.0%) failed. Out of these trials, 1,787
were in Phase I testing (toxicity and side effects), 6,102 in Phase II (efficacy), and 4,576 in Phase III
(effectiveness compared to current standards). We perform a temporal split for benchmarking. The
train/validation and test are time-split by the date January 1, 2014, i.e., the start dates of the test set
are after January 1, 2014, while the completion dates of the train/validation set are before January
1, 2014. Here, we cite the HINT model [8]], which is benchmarked against COMPOSE [161]] and
DeepEnroll [162] models.

Table 6: Clinical Trial Outcome Prediction task benchmark model results on the TOP dataset [8]].

Model | Phase 1 AUPRC | Phase 2 AUPRC | Phase 3 AUPRC | Indication Level AUPRC

HINT 0.772 0.607 0.623 0.703
COMPOSE 0.665 0.532 0.545 0.624
DeepEnroll 0.701 0.580 0.590 0.655

TDC-2 augments this task with additional datasets and benchmarks for the modalities discussed in
the problem formulation. The benchmark can be reproduced using the following https://github
.com/futianfan/clinical-trial-outcome-prediction,

A.4 Structure-Based Drug Design Task

Complete task formulation, definitions, and dataset descriptions are available in Section|[C.2.5] You
may additionally see https://tdcommons.ai/generation_tasks/sbdd/ for tasks and datasets.
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B Additional Materials

Here, we include external support material. This mainly consists of links to external code and data
sources used for benchmarking and website links.

B.1 Model Benchmarking

[TDC-2 Benchmarking Tooling Code for Chemical Perturbations|https://github.com/mims-h
arvard/TDC/blob/main/tdc/benchmark_group/counterfactual_group.py

[TDC-2 Benchmarking Tooling Code for CRISPR-based Perturbations|https://github.com/mim
s-harvard/TDC/blob/main/tdc/benchmark_group/geneperturb_group.py

|Reproducing Benchmark Results for Clinical Trial Outcome Prediction|https://github.com/f
utianfan/clinical-trial-outcome-prediction

|[Evaluating Cell-Type-Specific Context Metrics for INNACLE Across 10 Seeds|https://colab|
research.google.com/drive/1gjZIfmF2Gmz3NgmiuGP7910AmsPAvj_b7usp=shar
ing

|Evaluating Cell-Type-Specific Context Metrics for PINNACLE Across 10 Seeds. Outputs Refer{
lenced in PINNACLE [3] and its reproducibility documentation/https://drive.google
.com/drive/folders/1QX05afMekucbtjl_07ZxZhgnKVH30XMk7usp=sharing

[Code for Benchmarking PINNACLE. Additional Details are in [3]|https://github.com/mim
s-harvard/PINNACLE/tree/main/evaluate

[Reproducing TCR-Epitope results. Code for Benchmarking models 1n [4.3.1] A bash script for
each negative sampling method 1s included for each TCR-Epitope model. Instructions are|
in |A.3.3||https://drive.google.com/drive/folders/107G_h_O6VDABMEU_Xt7o
tXPazKOXTAG97usp=sharing

IReproducing Chemical Perturbation results. Code for Benchmarking models in [4.2] chemical
erturbation section. A run_chemical_sc.py Python script 1s included for each model
efault settings were used from each model's GitHub repo, and the experiments were run in

A100.| https://drive.google.com/drive/folders/1R1BnRPmWFRQ6EM_1EQ_FMwF

b1Y8I jXoyC7usp=sharing

B.2 Leaderboards

|TDC. PerturbOutcome Leaderboardhttps://tdcommons.ai/benchmark/counterfactual _
group/overview/

|TDC.ProteinPeptide Leaderboardhttps://tdcommons.ai/benchmark/proteinpeptide_
group/overview/

|TDC. scDTI Leaderboard|https://tdcommons.ai/benchmark/scdti_group/overview/
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C Supplementary Information

C.1 TDC-2 Codebase and Documentation

All code and documentation for TDC-2 are available in our Github repo https://github.com/m
ims-harvard/TDC. The Therapeutic Data Commons website includes further information on the
project, team members, datasets, data processing functions, TDC-1 publications, and the Model Hub.
The website can be reached at https://tdcommons.ai/l The TDC-2 Model Hub is available at
https://huggingface.co/tdc.

C.2 Task Definitions and Datasets
C.2.1 TDC.scDTI: Contextualized Drug-Target Nomination (Identification)

TDC-2 introduces TDC. scDTI task. The predictive, non-generative task is formalized as learning an
estimator for a function f of a target protein and cell type outputting whether the candidate protein ¢
is a therapeutic target in that cell type c:

y = f(t,c). (17)

Target candidate set. The target candidate set includes proteins, nucleic acids, or other molecules
drugs can interact with, producing a therapeutic effect or causing a biological response. The target
candidate set is constrained to proteins relevant to the disease being treated. It is denoted by:

T={ts,...,tn, }, (18)

where ¢4, ..., 1y, are IV, target candidates for the drugs treating the disease. Information modeled
for target candidates can include interaction, structural, and sequence information.

Biological context set. The biological context set includes the cell-type-specific contexts in which
the target candidate set operates. This set is denoted as:

C={ec1,...,en.}, (19)

where cy, ..., cy, are N, biological contexts on which drug-target interactions are being evaluated.
Information modeled for cell-type-specific biological contexts can include gene expression and tissue
hierarchy. The set is constrained to disease-specific cell types and tissues.

Drug-target identification. Drug-Target Identification is a binary label y € {1,0}, where y = 1
indicates the protein is a candidate therapeutic target. At the same time, 0 means the protein is not
such a target.

The goal is to train a model fy for predicting the probability § € [0, 1] that a protein is a candidate
therapeutic target in a specific cell type. The model learns an estimator for a function of a protein
target t € T and a cell-type-specific biological context ¢ € C as input, and the model is tasked to
predict:

J=fo(t €T, ceC). (20)

(Li, Michelle, et al.) Dataset

To curate target information for a therapeutic area, we examine the drugs indicated for the therapeutic
area of interest and its descendants. The two therapeutic areas examined are rheumatoid arthritis (RA)
and inflammatory bowel disease. For rheumatoid arthritis, we collected therapeutic data (i.e., targets
of drugs indicated for the therapeutic area) from OpenTargets for rheumatoid arthritis (EFO 0000685),
ankylosing spondylitis (EFO 0003898), and psoriatic arthritis (EFO 0003778). For inflammatory
bowel disease, we collected therapeutic data for ulcerative colitis (EFO 0000729), collagenous colitis
(EFO 1001293), colitis (EFO 0003872), proctitis (EFO 0005628), Crohn’s colitis (EFO 0005622),
lymphocytic colitis (EFO 1001294), Crohn’s disease (EFO 0000384), microscopic colitis (EFO
1001295), inflammatory bowel disease (EFO 0003767), appendicitis (EFO 0007149), ulcerative
proctosigmoiditis (EFO 1001223), and small bowel Crohn’s disease (EFO 0005629).

We define positive examples (i.e., where the label y = 1) as proteins targeted by drugs that have at
least completed phase 2 of clinical trials for treating a specific therapeutic area. As such, a protein
is a promising candidate if a compound that targets the protein is safe for humans and effective for
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treating the disease. We retain positive training examples activated in at least one cell type-specific
protein interaction network.

We define negative examples (i.e., where the label y = 0) as druggable proteins that do not have
any known association with the therapeutic area of interest according to Open Targets. A protein is
deemed druggable if targeted by at least one existing drug. We extract drugs and their nominal targets
from Drugbank. We retain negative training examples activated in at least one cell type-specific
protein interaction network.

Dataset statistics. The final number of positive (negative) samples for RA and IBD were 152 (1,465)
and 114 (1,377), respectively. In [3]], this dataset was augmented to include 156 cell types.

Dataset split. Cold Split: We split the dataset such that about 80% of the proteins are in the training
set, about 10% of the proteins are in the validation set, and about 10% of the proteins are in the test
set. The data splits are consistent for each cell type context to avoid data leakage.

References. [3]]

Dataset license. CC BY 4.0

Code Sample

The dataset and splits are currently available on TDC Harvard Dataverse. https://dataverse,
harvard.edu/file.xhtml?fileId=10143574&version=86.0https://dataverse.harvar
d.edu/file.xhtml?fileId=10143573&version=86.0 In addition, you may obtain the protein
splits used in [3] via the following code.

from tdc.resource.dataloader import Dataloader
data = Dataloader (name="opentargets_dti")
splits = data.get_split()

Contextualized Drug-Target Interaction

Contextualized drug target interaction task. We formalize the predictive, non-generative task
definition as learning an estimator for a function of the chemical association between the drug and
target, taking biomolecules from the target set ¢t € T, their cell-type-specific biological context ¢ € C,
and a drug from the candidate set d € D as input:

y = [f(t,c,d). 2

We center our formulation around the cell-type-specific context in which a target operates and binary
classification on the drug-target interaction of interest, such as whether the protein and drug will bind
with strong affinity.
Target candidate set. The target candidate set includes proteins, nucleic acids, or other molecules
drugs can interact with, producing a therapeutic effect or causing a biological response. It is denoted
by:

T ={t1,...,tn,}, (22)
where t1, ..., ty, are N, target candidates for the evaluated set of drugs. Data representation models
for target candidates can include interaction, structural, and sequence information.

Biological context set. The biological context set includes the cell-type-specific contexts in which
the target candidate set operates. This set is denoted as:

C={c1,...,en.}, (23)

where ¢y, ..., cy, are N, biological contexts on which drug-target interactions are being evaluated.
Data representation models for cell-type-specific biological contexts can include gene expression
and tissue hierarchy. The set can be constrained to the most relevant contexts, such as disease or
perturbation-specific cell types and tissues.

Drug candidate set. The drug candidate set includes the drug molecules tested for a particular
therapeutic effect or biological response. It is denoted by:

D={d,...,d,} 24)

where dy, . .., dy, are the N4 drug molecules being evaluated. Drug modeling can include molec-
ular structure, often represented in formats such as SMILES (Simplified Molecular Input Line
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Entry System) or InChI (International Chemical Identifier) [163]], physicochemical properties like
hydrophobicity and molecular weight [105]], and molecular descriptors and fingerprints [164].

Drug-target interaction. Drug-target interaction is a binary label y € {1, 0}, where y = 1 indicates
the drug-target interaction met its primary biomarker endpoints. At the same time, 0 means failing to
meet the primary biomarker endpoints.

The learning task is to learn a model f, for predicting the probability ¢, where § € [0,1], of a
drug-target pair meeting the primary biomarker endpoints while interacting in a cell-type-specific
biological context:

g=fo(teT,deD,ceC). (25)

C.2.2 TDC.PerturbOutcome: Perturbation-Response Problem Formulation

TDC-2 introduces Perturbation-Response prediction task. The predictive, non-generative task is
formalized as learning an estimator for a function of the cell-type-specific gene expression response
to a chemical or genetic perturbation, taking a perturbation p € PP, a pre-perturbation gene expression
profile from the control set ey € Ey, and the biological context ¢ € C under which the gene
expression response to the perturbation is being measured:

Yy = f(p7€0,0). (26)
We center our definition on regression for the cell-type-specific gene expression vector in response to
a chemical or genetic perturbation.
Perturbation set. The perturbation set includes genetic and chemical perturbations. It is denoted by:

]Pz{pl,...,p]vp}, (27)

where ¢, ..., pn, are N, evaluated perturbations. Information modeled for genetic perturbations
can include the type of perturbation (i.e., knockout, knockdown, overexpression) and target gene(s)
of the perturbation. Information modeled for chemical perturbations can include chemical structure
(i.e., SMILES, InChl) and concentration and duration of treatment.

Control set. The control set includes the unperturbed gene expression profiles. This set is denoted as:
Ey = {é0,,.--,en., }, (28)

where €, , ..., €N, are N, unperturbed gene expression profile vectors. Information models for
gene expression profiles can include raw or normalized gene expression counts, transcriptomic
profiles, and isoform-specific expression levels.

Biological context set. The biological context set includes the cell-type-specific contexts under
which the perturbed gene expression profile is measured. It is denoted by:

C=A{ec1,...,en.}, (29)

where c1, ..., cy, are the IV, biological contexts under which perturbations are being evaluated.
Information modeled for biological contexts can include cell type or tissue type and experimental
conditions [2]] as well as epigenetic markers [[122} [123]].

Perturbation-response readouts. Perturbation-Response is a gene expression vector €1, where €7;
denotes the expression of the i-th gene in the vector. It is the outcome of applying a perturbation,
p; € IP, within a biological context, ¢; € C, to a cell with a measured control gene expression vector,
e, € E.

The Perturbation-Response Prediction learning task is to learn a regression model fy estimating the

perturbation-response gene expression vector €1 for a perturbation applied in a cell-type-specific
biological context to a control:

eglzfg(pEIP’,eoelEy,ce(C). (30)
scPerturb Dataset

The scPerturb dataset is a comprehensive collection of single-cell perturbation data harmonized to
facilitate the development and benchmarking of computational methods in systems biology. It includes
various types of molecular readouts, such as transcriptomics, proteomics, and epigenomics. scPerturb
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is a harmonized dataset that compiles single-cell perturbation-response data. This dataset is designed
to support the development and validation of computational tools by providing a consistent and
comprehensive resource. The data includes responses to various genetic and chemical perturbations,
crucial for understanding cellular mechanisms and developing therapeutic strategies. Data from
different sources are uniformly pre-processed to ensure consistency. Rigorous quality control
measures are applied to maintain high data quality. Features across different datasets are standardized
for easy comparison and integration.

Dataset statistics. 44 publicly available single-cell perturbation-response datasets. Most datasets
have, on average, approximately 3000 genes measured per cell. 100,000+ perturbations.

Dataset split. Cold Split and Random Split defined on cell lines and perturbation types.
References. [2]]
Dataset license. CC BY 4.0

Code Sample

from tdc.multi_pred.perturboutcome import PerturbOutcome

from pandas import DataFrame

test_loader = PerturbOutcome (
name="scperturb_drug_AissaBenevolenskaya2021")

testdf = test_loader.get_data()

C.2.3 TDC.ProteinPeptide: Protein-Peptide Interaction Prediction Problem Formulation

TDC-2 introduces the Protein-Peptide Binding Affinity prediction task. The predictive, non-generative
task is to learn a model estimating a function of a protein, peptide, antigen processing pathway,
biological context, and interaction features. It outputs a binding affinity value (e.g., dissociation
constant Kd, Gibbs free energy AG) or binary label indicating strong or weak binding. The binary
label can also include additional biomarkers, such as allowing for a positive label if and only if the
binding interaction is specific [9} 124} [125]]. To account for additional biomarkers beyond binding
affinity value, our task is specified with a binary label.

Protein set. The protein set includes target proteins. It is denoted by:

]P):{pla"'apr}v (3D

where p1,...,pn, are N, target proteins. Information modeled for proteins can include sequence,
structural, or post-translational modification data.

Peptide set. The control set includes the peptide candidates. This set is denoted as:
S={s1,...,8n.}, (32)

where 51, ..., sn, are Vg candidate peptides. Information modeled for candidate peptides can include
sequence, structural, and physicochemical data.

Antigen processing pathway set. The antigen processing pathway set includes antigen processing
pathway profile information about prior steps in the biological antigen presentation pathway processes.
It is denoted by:

A={ay,...,an,}, (33)

where a1, ..., ay, are the N, antigen processing pathway profiles modeled. Information modeled
in a profile can include proteasomal cleavage sites [[126], classification into viral, bacterial, and
self-protein sources and endogenous vs exogenous processing pathway [99} 127, [110} [128]], and
target/receptor-specific pathway attributes such as transporter associated with antigen processing
(TAP) affinity [129], and endosomal/lysosomal processing efficiency [130].

Interaction set. It contains the interaction feature profiles. The set is denoted by:
I={i1,...,in,}, (34)

where i1, ..., ¢y, are the IV; interaction feature profiles. Information modeled in an interaction
feature profile can include contact maps [[131} 97,1132} [133]], distance maps [97} [134], electrostatic
interactions [131]], and hydrogen bonds [131]].
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Cell-type-specific biological context set. It contains the interaction feature profiles. The set is
denoted by:

C={c1,...,en.}, (35)

where cq, ..., cn, are the IV, cell-type-specific biological contexts under which the protein-peptide
interaction is being evaluated. Information modeled in the cell-type-specific biological context can
include transcriptomic and proteomic data. We note, however, that, to our knowledge, single-cell
transcriptomic and proteomic data has yet to be used in protein-peptide binding affinity prediction,
outlining a promising avenue of research in developing machine learning models for peptide-based
therapeutics.

Protein-peptide interaction. It is a binary label, y € {1,0}, where y = 1 indicates a protein-peptide
pair met the target biomarkers and y = 0 indicates the pair did not meet the target biomarkers.

The Protein-Peptide Interaction Prediction learning task is to learn a binary classification model fy
estimating the probability, ¢, of a protein-peptide interaction meeting specific biomarkers:

g=folpeP,seS,acAiclceC). (36)

TCHard Dataset

The TChard dataset is designed for TCR-peptide/-pMHC binding prediction. It includes over 500,000
samples from sources such as IEDB, VDJdb, McPAS-TCR, and the NetTCR-2.0 repository. The
dataset is utilized to investigate how state-of-the-art deep learning models generalize to unseen
peptides, ensuring that test samples include peptides not found in the training set. This approach
highlights the challenges modern deep learning methods face in robustly predicting TCR recognition
of peptides not previously encountered in training data.

Dataset statistics. 500,000 samples

Dataset split. Cold Split referred to as "Hard" split in [7]].
References. [7]]

Dataset license. Non-commercial

Code Sample

from tdc.resource.dataloader import Dataloader
data = DataLoader (name="tchard")
self.split = data.get_split()

PanPep Dataset

PanPep is a framework constructed in three levels for predicting the peptide and TCR binding
recognition. We have provided the trained meta learner and external memory, and users can choose
different settings based on their data available scenarios: Few known TCRs for a peptide: few-shot
setting; No known TCRs for a peptide: zero-shot setting; plenty of known TCRs for a peptide:
majority setting. More information is available in the Github repo https://github.com/bm2-1ab
/PanPep,

Dataset statistics. Data from multiple studies involving millions of TCR sequences.

Dataset split. Cold Split referred to as "Hard" split in [6].

References. [0]

Dataset license. GPL-3.0

Code Sample

from tdc.resource.dataloader import Dataloader
data = Dataloader (name="panpep")
self.split = data.get_split()
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(Ye X et al) Dataset

Affinity selection-mass spectrometry data of discovered ligands against single biomolecular targets
(MDM2, ACE2, 12ca5) from the Pentelute Lab of MIT This dataset contains affinity selection-
mass spectrometry data of discovered ligands against single biomolecular targets. Several AS-MS-
discovered ligands were taken forward for experimental validation to determine the binding affinity
(KD) as measured by biolayer interferometry (BLI) to the listed target protein. If listed as a "putative
binder," AS-MS alone was used to isolate the ligands to the target, with KD < 1 uM required and often
observed in orthogonal assays, though there is some (< 50%) chance that the ligand is nonspecific.
Most of the ligands are putative binders, with 4446 total provided. For those characterized by BLI
(only 34 total), the average KD is 266 + 44 nM; the median KD is 9.4 nM.

Dataset statistics. 34 positive ligands, 4446 putative binders, and three proteins

Dataset Split. Stratified Split and N/A Split: We provide stratified 10/90 split on train/test as well
as "test set only" split.

References. 119, 9]
Dataset license. CC BY 4.0

Code Sample

from tdc.multi_pred import ProteinPeptide
data = ProteinPeptide(name="brown_mdm2_ace2_12ca5")
data.get_split()

C.2.4 Clinical Trial Outcome Prediction Problem Formulation

The Clinical Trial Outcome Prediction task is formulated as a binary classification problem, where the
machine learning model predicts whether a clinical trial will have a positive or negative outcome. It is
a function that takes patient data, trial design, treatment characteristics, disease, and macro variables
as inputs and outputs a trial outcome prediction, a binary indicator of trial success (1) or failure (0).
Patient set. The patient set includes one or multiple patient sub-populations, with the extreme case
representing personalization. It is denoted as follows:

P:{pla"'7pr}a (37)

where p1,...,pn, are N, patient sub-populations in this trial. The TOP benchmark [8] dataset
represents patient data as part of the trial eligibility criteria. Patient data can include demographics
(1354 136k (137, 138} [139], baseline health metrics [[138),[139, [140], and medical history [[135} 136,
137,138 [139].

Trial design set. The trial design set includes this clinical trial’s design profiles. It is denoted as:
D= {di,...,dn,}, (38)

where dy, ..., dn, are Ny eligible trial design profiles for this clinical trial. Trial design profiles can
model information including phase of the trial [8]], number of participants, duration of the trial, trial
eligibility criteria [8]], and randomization and blinding methods [[141} 142} [143].

Treatment set. The treatment set includes the candidate treatments for the trial. It is denoted as:

T={t1,...,tn,}, (39

where t1,...,ty, are N; candidate treatments for the clinical trial. The information modeled
for treatments can include type of treatment (drug [8, [144], device [145, 146l [147], procedure
[[148L 149, 150} 151 [152]]), dosage and administration route [[141} [140, [153]], mechanism of action
[154] 15511156, pre-clinical and early-phase trial results [155} 140, (157} [158]].

Macro context set. The macro context set contains the configurations of macro variables relevant to
the clinical trial. It is denoted as:

(CZ{Cl,...,CNC}, (40)
where ¢y, ..., cn, are N, configurations containing the values for macro variables relevant to the
trial, which can include geography [[159} 1155} 1158} [160] and regulatory considerations [155}[159].
Trial outcomes. The trial outcome is a binary label y € {1,0}, where y = 1 indicates the trial met
their primary endpoints, while 0 means failing to meet with the primary endpoints.
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The learning task is to learn a model fy for predicting the trial success probability ¢, where § € [0, 1]:

j=fo(peP,deD,teT,ceC). (41)

TOP Dataset

TOP [8] consists of 17,538 clinical trials with 13,880 small-molecule drugs and 5,335 diseases.
Out of these trials, 9,999 (57.0%) succeeded (i.e., meeting primary endpoints), and 7,539 (43.0%)
failed. For each clinical trial, we produce the following four data items: (1) drug molecule infor-
mation, including Simplified Molecular Input Line Entry System (SMILES) strings and molecular
graphs for the drug candidates used in the trials; (2) disease information including ICD-10 codes
(disease code), disease description, and disease hierarchy in terms of CCS codes (https://www.hcup-
us.ahrq.gov/toolssoftware/ccs10/ccs10.jsp); (3) trial eligibility criteria are in unstructured natural
language and contain inclusion and exclusion criteria; and (4) trial outcome information includes a
binary indicator of trial success (1) or failure (0), trial phase, start and end date, sponsor, and trial
size (i.e., number of participants).

Dataset statistics. Phase I: 2,402 trials / Phase II: 7,790 trials / Phase III: 5,741 trials
Dataset split. Temporal Split as defined in [§]] and Section[A.3.3]

References. [8]]

Dataset license. Non-Commercial Use

Code Sample

from tdc.multi_pred import TrialOutcome
data = TrialOutcome(name = ’phasel’) # ’phase2’ / ’phase3’
split = data.get_split()

C.2.5 Structure-Based Drug Design Problem Formulation

Structure-based Drug Design aims to generate diverse, novel molecules with high binding affinity to
protein pockets (3D structures) and desirable chemical properties. These properties are measured
by oracle functions. A machine learning task first learns the molecular characteristics given specific
protein pockets from a large set of protein-ligand pair data. Then, from the learned conditional
distribution, we can sample novel candidates.

Target candidate set. The target candidate set includes proteins, nucleic acids, or other biomolecules
drugs can interact with, producing a therapeutic effect or causing a biological response. It is denoted
by:

T={t1,...,tn,}, (42)
where ¢4, ..., ty, are IV, target candidates for the evaluated set of drugs. Information modeled for
target candidates can include interaction, structural, and sequence information.

Ligand candidate set. The ligand drug candidate set includes the drug molecules being tested for a
particular therapeutic effect or biological response. It is denoted by:

L={l1,....In}, 43)

where [y, ...,[ly, are the NV; ligand/drug molecules being evaluated. Drug modeling can include
molecular structure, often represented in formats such as SMILES (Simplified Molecular Input Line
Entry System) or InChlI (International Chemical Identifier) [163]], physicochemical properties like
hydrophobicity and molecular weight [105]], and molecular descriptors and fingerprints [164].
Scoring function. The scoring function, denoted by .5, evaluates the binding affinity of ligand [ € LL
to protein target t € T.

Drug-likeness function. Function representing the drug-likeness of ligand [ € L, including properties
like solubility, stability, and toxicity.

The generative learning task is to generate the ligand ! € L maximizing binding affinity, Sy, and
drug-likeness, fp. Given a loss function, Loss(S(t,1), f(1)), fort € T and [ € L, the first step is to
learn a model My s.t.,

Mpy = argming[Loss(Sp(t, 1), fo(1))]. (44)
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This is followed by the ligand optimization step, which optimizes the ligand for maximum binding
affinity and drug-likeness given the trained model. A ligand optimization function, F’, such as addition
or multiplication, is used for the optimization:

I* = argmax;; [F(Sy(t € T, 1), fo(1))]. (45)
An example formulation would be as follows:

I* = argmax; ¢ [Sp(t € T, 1) x fo(1)]. (46)

PDBBind Dataset

PDBBind is a comprehensive database extracted from PDB with experimentally measured binding
affinity data for protein-ligand complexes. PDBBind does not allow the dataset to be re-distributed in
any format. Thus, we could not host it on the TDC server. However, we provide an alternative route
since significant processing is required to prepare the dataset ML. The user only needs to register at
http://www.pdbbind.org.cn/, download the raw dataset, and then provide the local path. TDC will
then automatically detect the path and transform it into an ML-ready format for the TDC data loader.

Dataset statistics. 19,445 protein-ligand pairs

Dataset split. Random Split

References. [5]

Dataset license. See note in the description on the TDC website

Code Sample

from tdc.generation import SBDD
data = SBDD(name=’PDBBind’, path=’./pdbbind’)
split = data.get_split()

DUD-E Dataset

DUD-E provides a directory of valuable decoys for protein-ligand docking.

Dataset statistics. 22,886 active compounds and affinities against 102 targets. DUD-E does not
support pocket extraction as protein and ligand are not aligned.

Dataset split. Random Split
References. [10]
Dataset license. Not specified

Code Sample

from tdc.generation import SBDD
data = SBDD(name=’dude’)
split = data.get_split()

scPDB Dataset

scPDB is processed from PDB for structure-based drug design that identifies suitable binding sites
for protein-ligand docking.

Dataset statistics. 16,034 protein-ligand pairs over 4,782 proteins and 6,326 ligands

Dataset split. Random Split

References. [11]

Dataset license. Not specified

Code Sample
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from tdc.generation import SBDD
data = SBDD(name=’scPDB’)
split = data.get_split()
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