
GENERATIVE ARTIFICIAL INTELLIGENCE FOR
NAVIGATING SYNTHESIZABLE CHEMICAL SPACE

Wenhao Gao∗
Department of Chemical Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
whgao@mit.edu

Shitong Luo∗

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
luost@mit.edu

Connor W. Coley
Department of Chemical Engineering

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139, USA
ccoley@mit.edu

∗Equal Contribution

ABSTRACT

We introduce SynFormer, a generative modeling framework designed to efficiently explore and navi-
gate synthesizable chemical space. Unlike traditional molecular generation approaches, we generate
synthetic pathways for molecules to ensure that designs are synthetically tractable. By incorporating
a scalable transformer architecture and a diffusion module for building block selection, SynFormer
surpasses existing models in synthesizable molecular design. We demonstrate SynFormer’s effec-
tiveness in two key applications: (1) local chemical space exploration, where the model generates
synthesizable analogs of a reference molecule, and (2) global chemical space exploration, where
the model aims to identify optimal molecules according to a black-box property prediction oracle.
Additionally, we demonstrate the scalability of our approach via the improvement in performance as
more computational resources become available. With our code and trained models openly available,
we hope that SynFormer will find use across applications in drug discovery and materials science.

1 Introduction

The discovery of novel functional molecules is a central challenge in chemical science and engineering and is crucial
for addressing key societal and technological challenges, including those related to healthcare [1, 2, 3], energy [4, 5],
and sustainability [6, 7, 8]. However, the process of discovery is often risky, complex, time-consuming, and resource-
intensive [9, 10, 11]. Recent advances in artificial intelligence (AI) [12], particularly in generative modeling [13, 14, 15],
have opened up new avenues for generative molecular design [16, 17, 18, 19, 20, 21, 22, 23]. The expressivity of deep
learning models, coupled with automatic differentiation [24] and increasingly affordable computational resources, have
made it possible to model the complex distribution of molecular structures directly. This capability allows for efficient
exploration of broader virtual chemical space than traditional virtual screening approaches [25, 26, 27], with more
fine-grained and controllable navigation compared to conventional combinatorial fragment-based methods [28, 29].

Despite the promise of generative design methods, their adoption has remained somewhat limited. One major challenge
is that most generative models often produce synthetically intractable molecular structures when targeting specific
design goals, such as optimizing property scores [30, 31, 32, 33]. When designed molecules cannot be synthesized and
validated in the lab at a reasonable cost, their practical value is limited. In addition, the actionability of computer-aided
molecular design is crucial for achieving rapid design cycles in early-stage drug discovery [34, 35] and for enabling
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closed-loop autonomous discovery [36, 37, 38, 39, 40]. This issue, though long-standing and observed in earlier
combinatorial algorithms, has become more pronounced with the advent of deep generative AI models.

There has been considerable interest in incorporating synthetic accessibility into molecular design methods [30, 33].
The most straightforward strategy is to incorporate a heuristic synthetic accessibility score as a design criterion [30, 41].
However, quantitatively estimating synthetic accessibility must account for factors such as regioselectivity, functional
group compatibility, and building block availability, all of which contribute to a rugged structure-synthesizability
landscape that makes the design of such scores an ongoing challenge. While notable efforts have been made to quantify
synthetic accessibility [42, 43, 44], achieving reliable quantification through a simple heuristic remains a distant
goal. Advances in the sample efficiency of molecular optimization [45, 46] have made it feasible to conduct explicit
retrosynthesis analysis for each designed molecule as a means of evaluating synthetic accessibility [47]. However,
the computational overhead remains significant, making this approach impractical for most existing generative design
models. Furthermore, unsynthesizable molecules provide no learning signal, and when a model continues to propose
such molecules, the sparse feedback hinders effective learning.

A more ideal and effective approach to synthesizable molecular design, in our opinion, involves constraining the design
process to focus exclusively on synthesizable molecules by designing synthetic pathways rather than simply designing
structures. With the growing role of massive make-on-demand libraries—whose sizes exceed what can be fully
enumerated [27, 48, 49, 50, 51, 52, 53]-this class of methods has gained increasing interest, spanning both traditional
Monte Carlo techniques [54, 55, 56, 57, 58, 59, 60] and more recent generative approaches [61, 62, 63, 64, 65, 66, 67].
Despite this progress, current synthesis-centric methods still fall short in terms of controllability and efficiency in
navigating the chemical space, and as a result have not achieved widespread adoption. These methods that rely on
property scores to guide the design process often exhibit lower efficiency in optimizing expensive oracles compared to
structure-centric methods [45], as they model the synthetic action sequence-property landscape, which is inherently
more complex than the structure-property landscape. Some recent models offer a more controlled exploration of
local chemical spaces by using a reference input molecule [61, 64, 65, 67]. However, the low reconstruction rates for
theoretically feasible molecules suggest a risk of partial collapse during decoding, suggesting that the practical chemical
space accessible to these models is smaller than the theoretically accessible space. This behavior leads to certain regions
of the chemical space becoming inaccessible, regardless of the input, ultimately hindering the overall design process.

Herein, we build upon our previous contributions [65, 67] to introduce SynFormer, a generative AI framework designed
for efficient and controllable navigation within a synthesizable chemical space. Like earlier synthesizable design
methods, SynFormer is a synthesis-centric approach, generating synthetic pathways by readily available building
blocks through robust chemical transformations, ensuring synthetic traceability subject to the limitations of those
transformation rules. SynFormer distinguishes itself from previous models with its compute-efficient and scalable
transformer architecture [14], which empirically shows improvements in performance as the training dataset grows. To
select suitable molecular building blocks from the large, discrete, and multimodal space of commercially-available
options, SynFormer incorporates a denoising diffusion model as a token head module [15]. The framework is fully
end-to-end differentiable, enabling effective training and optimization.

We demonstrate the utility and versatility of the SynFormer framework through two instantiations: (1) SynFormer-ED,
an encoder-decoder model that generates synthetic pathways corresponding to a given input molecule for exact or
approximate reconstruction of that input, and (2) SynFormer-D, a decoder-only model for generating synthetic pathways
that is amenable to fine-tuning towards specific property goals. Both models are trained on a simulated chemical
space derived from a curated set of 115 reaction templates and 223,244 commercially available building blocks,
extending beyond Enamine’s REAL Space [50]. We validate SynFormer’s capabilities by demonstrating success on (a)
reconstructing molecules within both the Enamine REAL and ChEMBL [68] chemical spaces; (b) local synthesizable
chemical space exploration given a reference molecule; and (c) global synthesizable chemical space exploration guided
by black-box property prediction model. These results not only highlight SynFormer’s ability to navigate synthesizable
chemical space using varied control strategies but also demonstrate its practical applicability in real-world molecular
design use cases. The scalability of the SynFormer framework with respect to both training data and model size suggests
considerable potential for further performance enhancement. In conclusion, these findings underscore SynFormer’s
flexibility and potential to impact molecular design across various domains, including drug development and materials
science.

2 SynFormer: a generative framework for synthesizable molecular design

SynFormer is a generative framework designed for modeling synthesizable chemical spaces, as schematically illustrated
in Figure 1. Although it is challenging to predict which molecules can be synthesized without experimental validation,
the progress of make-on-demand libraries such as Enamine REAL Space [50], GalaXi [51], and eXplore [52] has

2



Figure 1: Schematic illustration of the SynFormer framework and architecture. (A) The SynFormer-ED architecture is
an encoder-decoder that takes a molecule as input and outputs a synthetic route to the same or an analogous molecule.
(B) SynFormer-D is a decoder-only framework designed to generate synthetic routes. (C) Synthetic routes are tokenized
using a postfix notation to make them amenable to autoregressive generation. Routes are constructed by applying
115 reactions to a set of 223,244 molecular building blocks, covering a synthesizable chemical space estimated as
> 1060 molecules. (D) During generation, a token generated by the transformer is first classified by token type. If the
token represents a reaction or reactant (building block), it undergoes an additional classification process to select the
appropriate reactions or a denoising diffusion process followed by a nearest neighbor search to select the appropriate
building block(s).

demonstrated that molecules constructed by connecting purchasable molecular building blocks through a series of
curated, reliable reactions have a high likelihood of being synthesizable. Therefore, within the scope of this work, we
define synthesizable chemical space as encompassing all molecules that can be formed within the reaction network by
linking purchasable building blocks through up to five steps of known chemical transformations, though in principle,
there is no limit to the length of pathways that can be generated, and building blocks and reactions beyond our selected
list can also be utilized.

To effectively model chemically relevant and practically useful spaces, we adapted the reaction set used to construct
REAL Space, which primarily focuses on bi- and tri-molecular reactions that couple multiple building blocks together.
We further augment this set with additional common reactions, such as functional group interconversions, to better
simulate a general organic synthesis endeavor, resulting in a total of 115 reaction templates. As the set of purchasable
molecular building blocks, we use Enamine’s U.S. stock catalog to ensure high availability, which also approximates
those used to generate REAL Space. Although the proportion of synthesizable molecules may vary due to the broader
focus of the chemical space, our model theoretically covers a chemical space broader than then tens of billions currently
represented in the Enamine REAL Space, making it suitable for extensive exploration during the molecular design stage.
Both the choice of templates and the choice of building blocks can be straightforwardly modified prior to retraining and
are not inherent to SynFormer’s approach.
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Generating synthetic pathways requires careful consideration of their data structure. Bottom-up synthesis planning
involves sequential decision-making with branches and merges, encompassing data modalities that span reaction
templates and molecular building blocks, which represent small and very large discrete design spaces, respectively.
To manage this complexity, we adopt the postfix notation to represent synthetic pathways linearly, as described in
Luo et al.’s [67] (Figure 1C). Specifically, we use four types of tokens to represent synthetic paths: a start token
[START], an end token [END], reaction tokens [RXN], and building block tokens [BB]. Similar to the postfix notation
of mathematical formulae, the reactions are placed after the reagents, allowing the sequence to be processed in a
step-by-step manner without loss of generality in the synthetic pathways (e.g., the ability to accommodate any linear or
convergent sequence). This linear notation also enables the use of autoregressive decoding via a transformer architecture
[14], which is widely recognized as a scalable model backbone. A stack of standard transformer layers processes the
sequence as it is decoded, taking the previous tokens and outputting the embedding for the next token. Each token
embedding then passes through a multi-layer perceptron (MLP) classification head to determine the token type. If the
token is [END], the generation process terminates. If the token is [RXN] or [BB], the embedding is used to select which
building blocks to add and which reaction type to perform.

The selection of reactions can be relatively straightforward using an additional classification head; however, the number
of purchasable building blocks can easily exceed hundreds of thousands, millions, or perhaps billions, and will continue
to grow over time. Instead of relying on a static classification network, our past work [65, 67] has involved generating
Morgan fingerprints [69] and then retrieving the nearest building block from a list of candidates to enable generalization
to unseen building blocks. To further enhance this building block selection process, we adopt a denoising diffusion
probabilistic module [15] to predict the posterior distribution of molecular fingerprints conditioned on the token
embedding. Specifically, we model the molecular fingerprints using an n-dimensional joint Bernoulli distribution
(where n is the length of the fingerprint) and employ a multinomial diffusion framework [70] to handle the discrete
nature of the data. Using the denoising diffusion module as the building block token head offers several advantages:
while maintaining the end-to-end differentiable nature, it allows for scaling to longer fingerprints (2048 in this work
compared to 256 in previous studies), thereby avoiding bit collisions that can occur with shorter fingerprints and
enabling generation at a finer resolution. Additionally, this approach more effectively handles multimodal distributions,
where multiple “true" answers exist for a single decision–a particularly common scenario when modeling synthetic
pathways.

Based on this generative modeling framework, we implemented two specific models: SynFormer-D, which straightfor-
wardly implements a transformer decoder with the aforementioned reaction classification heads and building block
diffusion heads (Figure 1B), and SynFormer-ED, which adds a standard transformer encoder to condition generation
on an input SMILES string [71] (Figure 1A). To train the models, we uniformly sample synthetic pathways from the
synthesizable chemical space simulated from the reaction templates and building block list as training data. Detailed
descriptions of the model architectures, training protocols, and hyperparameter settings are provided in the Methods
section and Supplementary Information.

3 Results

3.1 Molecule reconstruction and chemical space coverage

An important factor that affects a model’s performance in molecular design applications is its coverage of chemical
space [72]. Even though the theoretical synthesizable chemical space constructed from reaction templates and building
blocks is vast, previous models have shown that a trained model can struggle to generate molecules that are known to
be synthesizable [64, 65, 57, 67]. This limitation can hinder the model’s effectiveness in molecular design if it cannot
access the chemical space where the optimal design resides. To assess the coverage of chemical space, we tested the
SynFormer-ED model on molecule reconstruction: how often SynFormer-ED can reconstruct a viable synthetic path
given a large set of potential molecules of interest.

We evaluated reconstruction on a randomly selected subset of 1,000 molecules from ChEMBL Database and Enamine’s
REAL Diversity Set (Figure 2A and B). SynFormer-ED successfully recovers 66% of molecules from REAL, notably
higher than that achieved by ChemProjector [67] and SynNet [30]. ChEMBL, by comparison, is a curated database of
bioactive molecules with drug-like properties, which includes molecules whose syntheses may require building blocks
or reactions beyond SynFormer’s training set. This results in a reconstruction rate of 20%—lower than in REAL Space
but still an improvement over previous models.

We further demonstrate that the model’s performance, as measured by the binary cross-entropy (BCE) of the molecular
fingerprints (FPs) [69], improves with increasing model size and training data (Figure 2C). Notably, we also observed
that the performance of the largest model did not outperform the second-largest model when insufficient data was
available. This finding suggests that estimating training performance based on early epochs may not be an effective
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Figure 2: Model performance on molecular reconstruction. (A and B) Comparison of the reconstruction rate and
average structural (Tanimoto) similarity between input and output molecules for SynFormer-ED, ChemProjector [67],
and SynNet [65] on 1,000 randomly selected molecules from (A) REAL Diversity Set and (B) ChEMBL Database. (C)
Scaling of model performance is measured by the training loss (binary cross-entropy (BCE) of the molecular fingerprint
(FP) prediction) as model size and training data size increase.

strategy when the model size surpasses a certain threshold [73]. These results emphasize the scalability of the
architecture [74] and indicate that further performance improvements can be achieved by increasing both the amount
of data and computational resources. They also underscore the importance of scaling model size and training data in
tandem to fully realize performance gains. As SynFormer is trained using simulated pathways according to its building
blocks and reaction rules, there is virtually no limit to the size of training data available.

3.2 Local chemical space exploration with SynFormer

In this section, we present the application of SynFormer-ED in exploring the local chemical space around a given
reference molecule, projecting it into a synthesizable chemical space. We demonstrate two use cases of our model
in molecular design: (1) generating synthesizable analogs for unsynthesizable designs and (2) hit expansion within
synthesizable chemical space.

3.2.1 Synthesizable analog generation

In molecule reconstruction experiments, we observed that SynFormer-ED is able to generate structurally similar
outputs even when provided with unsynthesizable (according to its building blocks and reactions) molecules. This
capability allows SynFormer-ED to be applied to generate synthesizable structural analogs of unsynthesizable designs,
as illustrated in Figure 3A. The implicit goal is to preserve as much of the overall structure and key pharmacophores as
possible, effectively transforming non-feasible molecules into synthesizable compounds, akin to “projecting” the input
molecule onto the synthesizable space.

To evaluate the impact of synthesizable projection, we first followed the experimental setup of Luo et al. [67] and used
SynFormer-ED to generate synthesizable analogs for molecules identified as unsynthesizable by ASKCOS [75] in [30].
The original molecules were optimized using de novo design methods targeting ten multi-objective scores, each ranging
from 0 to 1, where higher values are preferable. These scores encompass structural features, physicochemical properties,
and metrics related to similarity or dissimilarity to known drugs, as well as the presence of specific substructures
[76]. After the generation of analogs, we evaluated them using the same objective scores that the original designs
were optimized for. As shown in Figure 3B, the synthesizable projection effectively eliminated the peak in synthetic
accessibility (SA) scores [42] at around 6-7 observed in the original designs, shifting the distribution toward more
easily synthesizable molecules. Additionally, a significant fraction of the generated analogs exhibited objective scores
comparable to those of the original molecules (Figure 3C and Figure S2 in the Supporting Information). We demonstrate
two examples in Figure 3D. Starting with high-scoring but seemingly-unsynthesizable molecules, SynFormer-ED
generated analogs that preserved key structural features while correcting the unsynthesizable fragments. The generated
analogs retained objective scores comparable to those of the original molecules and are inherently synthesizable (Figure
S4 in Supporting Information), demonstrating SynFormer-ED’s ability to transform an unsynthesizable molecule into a
synthesizable analog while maintaining structural integrity.

To further validate the utility of SynFormer-ED in realistic drug discovery scenarios, we explored its application
in structure-based drug design (SBDD) [77, 78, 79]. While numerous SBDD algorithms can generate ligands with
promising predicted binding affinities (e.g., via 3D pocket-conditioned generation), these methods are often criticized
for overlooking synthetic accessibility [80, 81]. SynFormer-ED addresses this gap by projecting the outputs of such
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Figure 3: Application of SynFormer in projecting unsynthesizable design into synthesizable chemical space. (A)
Schematic illustration of SynFormer-ED generating synthesizable structural analogs for unsynthesizable molecules.
(B) Normalized distribution of SA scores for the originally designed molecules and their corresponding synthesizable
analogs. Note that the distributions are normalized to a peak value of 1 for a clearer comparison. (C) Scatter plot
comparing objective scores of originally designed molecules versus their generated analogs. Points are colored by
the structural similarity between them, showing that structurally similar analogs tend to possess close properties. (D)
Examples of originally designed unsynthesizable molecules and their SynFormer-generated synthesizable analogs.
Objective scores are shown beneath each molecule, demonstrating comparable activities for the generated analogs.
The modified fragments or atoms are highlighted in light blue. (E) The workflow shows SynFormer-ED generating
synthesizable analogs for ligands generated by structure-based drug design. (F) Scatter plot comparing the Vina docking
scores of originally designed ligands and their generated analogs. Points are colored based on the structural (Tanimoto)
similarity between the input and output, showing strong agreement in general and an ability to generate analogs with
comparable scores. (G) The original design and generated analog for Estrogen receptor alpha, with their SA Score and
Vina score below. The modified fragments or atoms are highlighted in light blue.

models into synthesizable chemical space (3E). We demonstrate this approach using Pocket2Mol [82] as an exemplary
SBDD generative model.

Targeting 15 protein targets from the LIT-PCBA dataset [83], we used SynFormer-ED to generate synthesizable analogs
of molecules initially designed by Pocket2Mol. SynFormer-ED successfully produced analogs that preserve similar
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Vina docking scores [84] while ensuring that each design has a synthetic pathway (Figure 3F). Two examples are
shown in Figure 3G: in the first example, the original design had a Vina score of -11.2 kcal/mol but a high synthetic
accessibility (SA) score of 5.84, indicating poor synthesizability. SynFormer-ED generated a structurally similar analog
with an improved SA score of 2.99 while exhibiting a Vina score of -9.8 kcal/mol. In the second example, although the
original design was likely synthesizable with access to the appropriate building blocks, SynFormer-ED further reduced
the SA score from 2.44 to 1.99 with minor improvements in Vina score. These results demonstrate SynFormer-ED’s
potential to complement existing SBDD algorithms by generating more practical and synthesizable drug candidates,
suitable for experimental validation and further development.

3.2.2 Hit expansion within synthesizable chemical space

Building on SynFormer-ED’s ability to explore local synthesizable chemical space around reference molecules, we
applied it to hit expansion within synthesizable chemical space. By allowing the model to select sub-optimal intermediate
choices of building blocks or reactions via a beam search, SynFormer-ED can generate sets of close analogs around
known hits, as illustrated in 4A. This approach aims to produce additional molecules that preserve the core motifs and
overall structural integrity, potentially enhancing design objectives and expanding the pool of candidates for downstream
processes, such as hit-to-lead optimization.

Following the setup in [85], we screened ZINC250k [86], a subset of ZINC database [87], using a predictive model
for inhibition activity against c-Jun NH2-terminal kinase 3 (JNK3) [88, 89, 90]. The top 10 scoring molecules, with
scores ranging from 0.49 to 0.68 (the higher, the better), were selected as hits and input into SynFormer-ED to generate
analogs, which were then evaluated with the JNK3 inhibition predictor. As a baseline, a nearest neighbor search within
Enamine REAL (approximately 7 billion molecules) was performed for the hits, retrieving approximately 100 of the
most similar molecules for each hit and evaluating them for JNK3 inhibition. While both SynFormer-ED and the nearest
neighbor search identified additional molecules with scores higher than those from a simple screening of ZINC250k,
SynFormer-generated analogs exhibited a larger enrichment in the high-scoring region (Figure 4B). We present two sets
of examples in Figure 4C. Though both methods produced analogs retaining the overall structure with higher predicted
inhibition than the original hits, the SynFormer-ED analogs consistently achieved higher scores compared to those from
the nearest neighbor search.

To further validate SynFormer-ED’s capability in a more realistic hit expansion scenario, we used experimentally
verified ligands for Human Pyruvate Kinase M2 (PKM2, PDB ID: 3ME3) [91] and Lysine Acetyltransferase 2A
(KAT2A, PDB ID: 5MLJ) [92] as reference molecules and evaluated their Vina docking scores. SynFormer-ED was
used to expand the reported ligands, generating 191 analogs for PKM2, with 179 of them with Tanimoto similarities
greater than 0.5 and Vina score changes lower than 1 kcal/mol. For KAT2A, SynFormer-ED generated 200 analogs,
111 of which met the criteria of Tanimoto similarity above 0.5 and Vina score changes lower than 1 kcal/mol. Figure
4D and E present three generated analogs for ligands targeting PKM2 and KAT2A, respectively, showing competitive
Vina scores while preserving the overall structure, along with their synthetic pathways (see Figure S11 and 12 in the
Supporting Information for more examples). Notably, in the case of KAT2A, the synthetic pathways of the generated
analogs are diverse despite the structural similarity of the final analogs, highlighting that the SynFormer-based approach
is not limited by the synthetic pathways of the input hits. This flexibility allows the generation of analogs with
distinct synthetic routes, which traditional path-based enumeration strategies [93, 85] cannot achieve. Combined with
these results, SynFormer-ED demonstrates significant potential in hit expansion, enabling the generation of practical,
synthesizable analogs suitable for further drug development stages.

3.3 Global chemical space navigation with SynFormer

In this section, we demonstrate the application of SynFormer to global chemical space navigation, enabling the opti-
mization of molecular properties treated as a black-box function across broad chemical spaces [45]. This process, also
known as de novo molecular optimization, is key to exploring novel molecular designs. We first show that SynFormer-D
can be fine-tuned using reinforcement learning to generate high-scoring molecules (Figure 5A). Furthermore, we
demonstrate how SynFormer-ED can be integrated as a mutation step within an evolutionary algorithm (Figure 5C),
achieving state-of-the-art sample efficiency while constraining the design space to synthesizable chemical space.

3.3.1 Molecular optimization by fine-tuning SynFormer-D with reinforcement learning

We fine-tuned SynFormer-D using reinforcement learning (RL) to guide its generation toward high-scoring molecules.
Specifically, we adopted a variant of the REINFORCE algorithm [94], which iteratively generates a batch of molecules,
evaluates their properties, and fine-tunes the model parameters with the goal of maximizing the desired properties
(detailed methods can be found in the Methods section). In our experiments, we optimized predicted binding affinity
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Figure 4: Application of SynFormer in hit expansion. (A) Schematic illustrating SynFormer-ED expanding a known hit
compound into structurally similar, synthesizable analogs. (B) Normalized distribution of predicted JNK3 inhibition
scores for screening ZINC250k, nearest neighbors in Enamine REAL of the hits, and SynFormer-generated analogs of
the hits, highlighting the enrichment of high-scoring ligands among SynFormer analogs. Note that the distributions
are normalized to a peak value of 1 for a clearer comparison. (C) Examples of hits from screening ZINC250k and
corresponding best-scored generated analogs, alongside the best-scored molecules identified in the nearest neighbor
search within Enamine REAL, demonstrate SynFormer-ED’s ability to generate high scoring, synthesizable compounds.
The motifs retained from the hits are colored in red. (D and E) Expanding experimentally validated ligands for the
PKM2 target (PDB: 3ME3) (D) and the KAT2A target (PDB: 5MLJ) (E). Three representative analogs are shown for
each target, along with their synthetic pathways. The structural motifs retained from the hits are colored in red.

against the dopamine receptor D2 (DRD2) [95] as an exemplary oracle function. As shown in Figure 5B, our method
(denoted as SF-RL) successfully biases generation toward high-scoring molecules and outperforms several popular
optimization methods [96, 29]. Although SF-RL’s sample efficiency is lower than the most efficient algorithms like
GraphGA [29] and REINVENT [19], these results confirm the feasibility and effectiveness of fine-tuning SynFormer-D
for de novo molecular optimization. Given that much of the algorithm’s design space of RL is yet to be explored, the
potential for additional algorithmic improvements in RL-based fine-tuning remains substantial.
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Figure 5: Application of SynFormer in global chemical space exploration. (A) Illustration of fine-tuning SynFormer-D
with reinforcement learning. (B) Performance comparison of SynFormer fine-tuning with reinforcement learning
(SF-RL) against other popular methods, showing the average top-10 molecule scores versus the number of oracle
calls [45]. The plots represent the mean performance curves of 5 independent runs, with the shaded region for SF-RL
indicating the range across these runs. (C) Illustration of a genetic algorithm with SynFormer-ED used for mutation
steps. (D) AUC Top-10 performance comparison across different molecular design methods (GraphGA-SF, GraphGA
[29], AugMem [97], SynNet [65], DoG-Gen [64]) for four tasks from GuacaMol [76]. (E) Distribution of SA Scores
[42] for the top 25 molecules at various optimization steps, with colors representing objective scores, demonstrating
how SynFormer effectively constraints its design space to synthesizable space exclusively. (F) The best molecules
generated by GraphGA (top) and GraphGA-SF (bottom) show that GraphGA-SF identifies a more synthetically tractable
candidate with a reduced SA score, albeit with a minor sacrifice in the objective score.

3.3.2 Molecular optimization by using SynFormer-ED as a mutation operator within a genetic algorithm

Lastly, we demonstrate a genetic algorithm framework incorporating SynFormer-ED projection as a mutation step.
After the standard processes of crossover and mutation to diversify the candidate pool, SynFormer-ED projects all
candidates into synthesizable chemical space. This step not only corrects unsynthesizable fragments and linkages,
ensuring synthetic accessibility, but also introduces additional diversity into the candidate pool. Generated molecules
are then scored and ranked, with the top-performing ones selected for further iterations (Figure 5C). For crossover and
mutation rules, we follow the GraphGA algorithm [29], a well-established molecular optimization method that regularly
performs well in molecular optimization benchmarks [45, 98] and real-world applications [41].

We evaluated the performance of this genetic algorithm, denoted as GraphGA-SF, across four tasks from the GuacaMol
benchmark [76]: Sitagliptin MPO, Scaffold Hop, Perindopril MPO, and Ranolazine MPO. As shown in Figure 5D,
GraphGA-SF demonstrated optimization efficiency comparable to the original GraphGA and the state-of-the-art RL
method, Augmented Memory (denoted as AugMem) [97], while significantly outperforming previous methods for
synthesizable molecular optimization. Notably, in the Sitagliptin MPO task, where the primary objective score often
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favored unsynthesizable molecules, conventional methods without synthesizability constraints tended to generate
exclusively unsynthesizable compounds (See SA Score in Figure 5E and structure in Figure 5F). On the other hand,
synthesis-centric design methods, such as SynNet [65] and DoG-Gen [64], struggled to find meaningful optimization
signals due to the sparse signal and their limited coverage of chemical space. In contrast, GraphGA-SF matched the
performance of GraphGA while ensuring each design has a synthetic pathway like other synthesis-centric methods.
We highlight the best designs from each genetic algorithm in Figure 5F, showing that the molecules generated by
GraphGA-SF were significantly more synthesizable, with only a modest sacrifice in the main objective score.

Our results demonstrate that by combining the optimization capability of GraphGA with SynFormer-ED’s ability to
restrict the design space to synthesizable compounds, GraphGA-SF can effectively and efficiently optimize molecular
properties while maintaining synthetic feasibility. Furthermore, SynFormer-ED’s integration as a mutation operator
exemplifies its potential as a generalizable component in molecular design algorithms, allowing these frameworks to
confine their search to synthesizable chemical spaces. This adaptability enables SynFormer-ED to leverage ongoing
advances in de novo molecular design algorithms, offering a versatile and robust solution to the problem of synthesizable
molecular design.

4 Discussion

In this paper, we introduced SynFormer, a generative modeling framework designed to efficiently explore and navigate
synthesizable chemical space. We curated a set of reaction rules that allow the model to construct a synthesizable
chemical space beyond Enamine REAL Space, ensuring that the designed molecules are feasible for synthesis subject to
the reliability of such rules. By integrating transformer architectures with a diffusion module, SynFormer enhances the
ability to make beneficial choices of building blocks and reactions during autoregressive bottom-up pathway generation,
surpassing previous models for synthesizable molecular design. We demonstrated two key applications of SynFormer:
local chemical space exploration and global optimization within synthesizable chemical space, both of which yielded
successful results. Additionally, we showed that SynFormer is a scalable architecture, with the potential for further
performance improvements with increased resources. While our focus was on applications in drug discovery, the models
are readily applicable to other domains of small organic molecule design [4, 7].

There are several areas where we expect further improvements can be made. First, the reconstruction rate of SynFormer-
ED is not perfect, suggesting that certain regions of synthesizable chemical space may remain inaccessible, even
though the model possess the reaction templates and building blocks that should make it possible to reach them.
Additionally, RL-based fine-tuning in SynFormer-D currently requires a relatively large number of oracle calls to
achieve competitive results. Another limitation lies in the quality and coverage of reaction templates and building
blocks. These templates do not account for stereochemistry, meaning that chiral centers can only be inherited from
building blocks, not installed during synthesis. Furthermore, the Enamine building blocks we choose are designed
for combinatorial library construction and do not comprehensively cover commercially available materials. These
constraints may limit the model’s applicability to somewhat flat, linearly-constructed sp2-rich structures and restrict
its use for more complex molecules like natural products [99]. Expanding the SynFormer framework to include more
sophisticated reactions and a broader range of building blocks is possible, but will require further validation.

5 Methods

Synthesizable Chemical Space Construction

A synthesizable chemical space is defined as a set of molecules that can be accessed from purchasable starting materials
(building blocks) through a series of reliable chemical transformations. One well-known example of such a chemical
space is Enamine REAL Space (REadily AccessibLe) [50], which consists of 48 billion molecules. These molecules
can be synthesized by applying 1-3-step synthetic transformations derived from approximately 170 well-validated
parallel synthesis protocols to over 143,000 qualified building blocks. The synthesis and delivery of molecules within
the REAL Space typically takes 3-4 weeks, with an average synthesis success rate of 80%, which attests to the validity
of the way of constructing synthesizable chemical space. In this work, we aim to cover the REAL Space and extend it
further by incorporating additional reactions and a greater number of reaction steps to mimic a general organic synthesis
endeavor.

Reaction templates

Reaction rules are encoded as strings using the SMARTS grammar [100], known as reaction templates. We created a
set of 86 reaction templates, which directly implement the 169 reactions used in the January 2022 version of the REAL
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Space. This set includes both bi-molecular and tri-molecular reactions, with deprotection reactions treated as separate
entities. Reactions that can be represented by the same transformation rule are encoded using a single SMARTS string.
The combination of this reaction template set and the Enamine building block list should cover a space similar to the
REAL Space.

In addition to linking building blocks, we also considered more general chemical synthesis processes. We manually
selected 29 additional reaction templates from Hartenfeller et al.’s [101] and Button et al.’s [102] template collection,
which were not covered by the initial 86 reactions. These reactions include well-known organic transformations such as
the Wittig reaction [103], Buchwald-Hartwig reaction [104], and various functional group conversions. This expanded
set of reactions complements the REAL reactions by providing a closer approximation to general laboratory organic
synthesis.

We acknowledge certain limitations in our templates: no reaction conditions, regioselectivity, or functional group com-
patibility are currently considered. The templates represent potential transformations, meaning that the chemical space
we constructed likely represents a superset of the actual synthesizable chemical space. Furthermore, stereochemistry
is not considered in our reaction rules, so stereocenters can only be inherited from the building blocks and cannot be
installed during synthesis.

Building blocks

The building block list comprises reagents or intermediates that are commercially available and can be directly purchased
from the market. This list can include any set of purchasable molecules, including those found in Enamine REAL Space.
For this study, we utilized Enamine’s U.S. in-stock collection of building blocks, which was available for delivery as of
October 1st, 2023. The building block list contains a total of 223,244 molecules. This selection was made to ensure the
accessibility and immediate availability of the building blocks for synthesis.

Representing synthetic pathways using postfix notation

In SynFormer, synthetic pathways are represented using the postfix notation of synthesis [67]. In this format, the
operators (chemical reactions) follow their operands (molecular building blocks), providing a structured and concise
way to represent reaction sequences. Each synthesis pathway is encoded as a sequence of tokens, where each token
represents either a reaction step or a building block. This linear sequence simplifies the representation of converging
synthetic pathways by eliminating the need for “parentheses” to indicate the order of operations, making it particularly
amenable to autoregressive modeling. This approach enables efficient handling of complex synthetic routes while
ensuring that each step in the pathway is captured in the correct order.

SynFormer

The SynFormer framework is a generative modeling architecture designed to explore synthesizable chemical space
by generating synthetic pathways for molecules rather than molecular graphs. SynFormer is based on a transformer
architecture with a diffusion module to select molecular building blocks. We designed two variants of the model to
handle distinct molecular design tasks:

• SynFormer-D, a decoder-only model designed for generating new molecules or optimizing molecules based
on feedback from a black-box objective function.

• SynFormer-ED, an encoder-decoder model that generates synthetic pathways based on a given reference
molecule, enabling local chemical space exploration.

Transformer decoder

SynFormer adopts the transformer decoder architecture as its backbone [14]. The decoder generates postfix notations of
synthesis in an auto-regressive manner, which is, predicting the next token according to previous tokens. We assign
embedding vectors to each reaction template and the [START] token, and convert building blocks fingerprint into
continuous-valued vectors with a multi-layer perceptron (MLP) in the beginning. To indicate the position of each token
within the sequence, we add positional encodings [14] to the embedding vectors.

The transformer decoder gathers information for each token from its preceding tokens via the multi-head attention
mechanism [14], where each token’s embedding vector is first projected to query, key, and value vectors, and then
updated by aggregating the values of other tokens weighted by the softmax-ed inner product of the query vector and the
other token’s key vector.
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Following the transformer decoder, we use a classifier based on an MLP to predict the next token’s type. If it is predicted
as an [END] token, the decoding process will be terminated. If it is predicted as a reaction, another classifier is used to
predict the probability of each reaction template being the next token. When the next token is predicted as a building
block, a diffusion module is used to generate molecular fingerprints which are subsequently used to retrieve building
blocks from the database.

Transformer encoder

The transformer decoder can be conditioned by a transformer encoder, i.e., given reference molecule represented by a
SMILES string. The transformer encoder produces vector representations for each token in the SMILES string, which
the decoder can attend to via the cross attention mechanism [14].

Diffusion module for building block fingerprints

We build a denoising diffusion model to learn the distribution of molecular fingerprints, represented as n-dimensional
binary vectors, where n denotes the number of bits in the fingerprint. This distribution is modeled as a joint Bernoulli
binary distribution of n dimensions.

During training, the forward diffusion process perturbs the fingerprint vector by randomly flipping each bit according to
the following noise distribution:

q(x
(j)
t |x

(j)
0 ) = Bernoulli(x

(j)
t | ᾱtx

(j)
0 + (1− ᾱt) ·

1

2
), (1)

where x(j)
0 represents the j-th bit of the ground truth fingerprint vector, and x

(j)
t represents the perturbed bit. Here, ᾱt is

a value that controls the noise level, which we define using a formulation similar to multinomial diffusion [70]. ᾱt starts
at 1 and monotonically decreases to 0. When ᾱt = 0, the distribution q becomes the uniform Bernoulli distribution,
where the noise level reaches the maximum. The denoiser network learns the bitwise Bernoulli distribution of ground
truth fingerprints conditioned on the perturb fingerprint and the embeddings from the transformer decoder. It is trained
by minimizing the binary cross entropy loss that measures the discrepancy between the distribution and the ground
truth fingerprint.

The inference process is known as the reverse diffusion process, where we start with a random bit vector drawn from
the uniform Bernoulli distribution, and denoise it iteratively with the denoiser network. Finally, the denoised bit vector
is used as a fingerprint to retrieve building block molecules from the database.

Reinforcement learning fine-tuning

For global optimization tasks, SynFormer-D was fine-tuned using a variant of the REINVENT algorithm [19] based on
REINFORCE [94], a type of reinforcement learning (RL). Our RL setup was designed to minimize the following loss
function, which incentivizes the model to bring the pseudo-log-likelihood (PLL) of generating a synthetic pathway
closer to the objective score of the product molecules:

L(θ) = E
[
(PLLθ(p,m)− σ · S(m))

2
]
, (2)

where θ represents the trainable network parameters, p is the synthetic pathway, m is the product molecule, S(m) is the
objective score of molecule m, typically scaled between 0 and 1 (the higher, the better), σ is a constant scaling factor,
PLLθ(p,m) is the pseudo-log-likelihood of generating the pathway p leading to molecule m. The pseudo-log-likelihood,
PLLθ(p,m), is computed as the sum of three terms: the log-likelihood of selecting each token (reaction step or building
block), the log-likelihood of selecting each reaction type, and the empirical log-likelihood value of the building block
fingerprints:

PLLθ(p) =
∑
i

logPθ(xi) + log P̂θ(xbuilding block), (3)

where xi represents each component of a synthetic path (token, reaction). The empirical likelihood of the building
block fingerprints is approximated by:

P̂θ(xbuilding block) = xdenoised · xtarget

+ (1− xdenoised) · (1− xtarget), (4)

where xdenoised is the denoised fingerprint vector, xtarget is the ground truth fingerprint.
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Genetic algorithm with SynFormer-ED as a mutation operator

We integrated SynFormer-ED as a mutation step into an evolutionary framework for global chemical space exploration
and optimization. The genetic algorithm follows a standard workflow: starting with a pool of candidates randomly
sampled from the ZINC database, pairs of molecules are selected to undergo crossover, producing an offspring pool.
Mutation is then applied to each offspring with a specific probability, followed by an additional mutation step where
SynFormer-ED projects all offspring into synthesizable space. This step ensures that unsynthesizable fragments are
corrected and adds additional diversity to the candidate pool. The offspring pool will be evaluated, and the highest-
scored ones will form the next generation for the next iteration. The crossover and mutation rules were adopted from
the GraphGA [29] algorithm; specifically, crossover involves graph matching and exchanging molecular halves, while
mutation employs a set of hand-coded rules including both atom- and fragment-level modifications. We adopted the
hyperparameters from [98].

Evaluation Details

This section describes the precise settings used in the evaluation of SynFormer-ED and SynFormer-D.

Reconstruction and local chemical space exploration

SynFormer-ED was employed for reconstruction, analog generation, and hit expansion. The workflows for these tasks
are similar: SynFormer-ED encodes the input molecule and decodes it into synthetic pathways, using a search width
of 24 and an exhaustiveness of 64 during decoding. For reconstruction and analog generation, Tanimoto (Jaccard)
similarity [105] to the input molecule based on Morgan fingerprints [106] was evaluated for each generated molecule,
with the most similar molecule selected as the output. In hit expansion, generated molecules were evaluated based on
both the design objective score and Tanimoto similarity.

We tested the reconstruction performance on a random sample of 1,000 molecules from Enamine’s REAL Space [50]
and the ChEMBL database [107]. Molecules were sampled from the REAL Diversity Set, which includes 48.2 million
molecules and maximizes diversity to represent the broader REAL Space. These molecules comply with the Rule of 5
(Ro5) [108] and Veber criteria [109], making them suitable for drug-like properties. ChEMBL samples were taken from
version 29 of the database, released in 2021.

The Synthetic Accessibility (SA) Score [42], a heuristic measure evaluating structural complexity based on fragment
frequency in PubChem [110], was used to assess the synthesizability of the generated molecules. For synthesizable
analog generation, 10 objective scores from the GuacaMol benchmark [76] were used, which involve optimizing various
physicochemical properties, similarities or dissimilarities to known drugs, and specific structural motifs.

In hit expansion, we also used a predictive model [90] to assess inhibition against c-Jun N-terminal Kinase-3 (JNK3),
a member of the mitogen-activated protein kinase family. This model is a random forest classifier utilizing ECFP6
fingerprints trained on the ExCAPE-DB dataset [89].

AutoDock Vina [84] was employed to evaluate binding affinities against protein targets in both structure-based drug
design and hit expansion tasks. Protein structures and pocket information were sourced from the LIT-PCBA dataset
[83], and an exhaustiveness setting of 16 was used for most calculations.

For baseline comparisons in analog finding, we conducted a nearest neighbor search within Enamine REAL. This was
done by accessing the Enamine website (https://new.enaminestore.com/draw-search) and downloading approximately
100 nearest neighbors by adjusting the similarity threshold value.

Global chemical space exploration

For both SF-RL and GraphGA-SF, we employed these models to solve molecular optimization problems without
predefined starting points [45]. In each experiment, we assumed the presence of an oracle, i.e., a function that evaluates
the desired property of a molecule, providing the ground truth value. As property evaluation is often time- and resource-
intensive in real-world scenarios, each experiment was limited to 10,000 oracle calls, meaning up to 10,000 molecules
could be evaluated. During optimization, all evaluated molecules were recorded, and the primary performance metric
was the area under the curve (AUC) of the top-K average property value versus the number of oracle calls (AUC top-K).
The reported AUC values were min-max scaled to the range [0, 1].

We evaluated the global chemical space optimization capabilities of SF-RL and GraphGA-SF on optimizing DRD2
inhibition [111] and four multi-objective properties from the GuacaMol benchmark [76]: Sitagliptin MPO, Scaffold Hop,
Perindopril MPO, and Ranolazine MPO. DRD2 inhibition was assessed using a classifier trained on the ExCAPE-DB
dataset [89], employing a support vector machine (SVM) with a Gaussian kernel and ECFP6 fingerprints to distinguish

13



active from inactive compounds for the Dopamine Receptor D2 (DRD2) [111]. The multi-objective tasks from the
GuacaMol benchmark are described above [76]. All oracle functions were accessed through the Therapeutic Data
Commons (TDC) [112, 113].

The baseline methods compared in this study include:

• GraphGA [29] is a popular heuristic algorithm inspired by natural evolutionary processes, featuring crossover
rules derived from graph matching and mutations applied at both the atom- and fragment-level.

• Graph MCTS [29] uses Monte Carlo Tree Search to explore molecular structures by locally searching each
branch of the current state (molecule or partial molecule) and selecting the most promising candidates based
on property scores for subsequent iterations.

• REINVENT [19] utilizes a policy-based reinforcement learning (RL) approach where agents take actions
in an environment to maximize cumulative rewards, tuning recurrent neural networks (RNNs) to generate
SMILES strings.

• Augmented Memory (AugMem) [97] integrates SMILES-based reinforcement learning with augmented
training through experience replay and selective memory purge to prevent model collapse. This approach
achieves state-of-the-art sample efficiency, demonstrating the highest reported performance in the PMO
benchmark.

• GFlowNet [96] is a generative AI model that treats the generative process as a flow network and trains it with
a temporal difference-like loss function, aligning the generation process with the target property distribution
by matching the property of interest to the flow volume.

• DoG-Gen [64] models synthetic pathways as Directed Acyclic Graphs (DAGs) and uses an RNN-based
generator, optimizing via an iterative learning method that incorporates high-scoring molecules into the
training data for successive fine-tuning of the generative model.

• SynNet [65] is a synthesis-based method that applies a genetic algorithm to molecular fingerprints, decoding
them into synthetic pathways using trained neural networks.

The implementations of these methods were adapted from their original publications with minor modifications, and
hyperparameters were set according to the specifications in [45], except AugMem which is from the original publication.
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A Additional method details

A.1 Model architectures

A.1.1 Transformer decoder

SynFormer adopts the standard Transformer decoder architecture [14] to generate postfix notation of synthesis in an
auto-regressive manner. A postfix notation of synthesis may contain four types of tokens: a [START] token, [END]
token, reaction token, and building block token. Each token, regardless of its type, is represented as a 768-dimensional
embedding vector that is differentiable during training. Specifically, the embedding vectors of start token, end token,
and reaction tokens are stored in a look-up table implemented by PyTorch’s nn.Embedding layer. Note that, as we use
a fixed set of reactions consisting of only 169 reaction templates, it is practical to store the embedding vectors for each
of them. However, the building block database, containing more than 200k molecules, is too large to assign embedding
vectors to each building block separately. Thus, we use a multi-layer perceptron (MLP), to convert 2048-bit Morgan
fingerprints of building blocks into 768-dimensional continuous vectors. This MLP consists of three layers, with hidden
dimensions of 1,536 and ReLU activation.

To inform the model with the location of each token, we add sinusoidal positional encoding [14] to embedding vectors:

pi =

sin
(

j

10000
2i
d

)
, i = 0, 2, . . . , 766

cos
(

j

10000
2i
d

)
, i = 1, 3, . . . , 767

, (5)

where i denotes the dimension index, d = 768 denotes the embedding dimension, and j denotes the token position
within the sequence.

The Transformer decoder network operates on the token embedding vectors. It consists of 10 attention layers with
residual connection and layer normalization in between. In SynFormer-ED, the attention layer contains both self-
attention and cross-attention that gathers information from the encoder, while in SynFormer-D, only self-attention is
used. Each attention layer contains 16 attention heads. Each head projects the feature vectors into 256-dimensional
query, key, and value vectors, which are then transformed into output vectors via the attention mechanism. Output
vectors from different attention heads are concatenated into a 2,048-dimensional vector, which is then mapped into a
768-dimensional vector used to update the token embedding via residual connection and layer normalization.

A.1.2 Transformer encoder

SynFormer-ED contains a Transformer-based encoder network that conditions the decoder with a given SMILES string.
The input SMILES string is split in to a list of tokens according to the following vocabulary:

H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag,
Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,
Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, At, Rn, Fr, Ra, Ac, Th, Pa, U,
Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg, Cn, Nh, Fl,
Mc, Lv, Ts, Og, b, c, n, o, s, p, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, [, ], (, ), ., =, #, -,
+, \, /, :, , @, ?, >, *, $, %

Each token in the list is represented by a 768-dimensional embedding vector, and position encodings (Eq. 5) are
added to the embedding vector. The Transformer encoder contains 6 layers, each of which has 16 attention heads with
256-dimensional query, key, and value vectors.

A.1.3 Scaling of model size

Table 1 below shows the hyper-parameters for SynFormer-ED of different sizes measured by the number of trainable
parameters. These hyper-parameter sets are used to investigate the scaling of model performance. For the remaining
experiments, we use the model with 229M parameters.

A.1.4 Diffusion fingerprint head

The fingerprint of a building block token are modeled by an n-dimensional Bernoulli distribution. We use the denoising
diffusion probabilistic model [15, 114] to model this distribution. The denoising diffusion probabilistic model generates
data by iterative denoising an initial sample drawn from a simple prior distribution. To train a neural network capable of
denoising, noisy samples based on ground truth data must be constructed via the forward diffusion process.
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Table 1: Specific model hyper-parameters used in the scaling experiments.
Model Size 229M 68M 17.5M 3.7M

# Feature Dimensions 768 512 256 128
# Encoder Layers 8 6 6 4
# Encoder Attn. Heads 16 16 8 4
# Encoder Feed-forward Dimensions 4096 2048 1024 512
# Decoder Layers 10 8 8 6
# Decoder Attn. Heads 16 16 8 4
# Decoder Feed-forward Dimensions 4096 2048 1024 512

In SynFormer, we define the bit-wise forward diffusion process for fingerprint x = [x(1), . . . , x(n)] ∈ {0, 1}n as,
following the formulation of multinomial diffusion [70]:

q(xt|xt−1) =

n∏
j=1

q(x
(j)
t |x

(j)
t−1) where q(x

(j)
t |x

(j)
t−1) = Bernoulli(x

(j)
t | (1−βt)x

(j)
t−1+βt ·

1

2
), j = 1 . . . n. (6)

Since the forward diffusion process is Markovian, it is possible to express the bit-wise distribution of xt directly with
the ground truth fingerprint x0:

q(xt|x0) =

n∏
j=1

q(x
(j)
t |x

(j)
0 ) where q(x

(j)
t |x

(j)
0 ) = Bernoulli(x
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1

2
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where αt = 1− βt and ᾱt =
∏t

τ=1 ατ . This expression enables efficient one-step generation of xt given x0 at training
time, while it requires t steps if we follow Eq. 6. Intuitvely, 1− ᾱt determines the chance of the fingerprint bit being
resampled uniformly at timestep t, and it should increase monotonically from t = 0 to T . We adopt the noise schedule
in terms of ᾱt proposed by Nichol and Dhariwal [114]:

ᾱt =
f(t)

f(0)
, f(t) = cos

( t
T + s

1 + s
· π
2

)2

. (8)

From this definition, βt and αt can be obtained by βt = 1 − ᾱt

¯αt−1
and αt = 1 − βt respectively. In practice, βt is

clipped to be no larger than 0.999 to prevent instability.

To denoise a noisy fingerprint xt into the less noisy xt−1 which eventually leads to x0, the denoiser network should
learn the following posterior distribution derived from Eq.6 and Eq.7:

q(xt−1|xt,x0) =
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In this posterior distribution, x0 is the unknown variable to be predicted, which we parameterize with a neural network
conditional on both the current noisy fingerprint xt and the embedding vector from the Transformer decoder h, leading
to the following reverse diffusion process:

p(xt−1|xt) =
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(j)
0 = sigmoid(DenoiserNet(xt,h)[j]).

(12)

At training time, we randomly sample a step index t from U{1, T}, perturb the ground truth fingerprint according to
Eq. 7, and finally compute and back-propagate through the following training loss to align the predicted distribution to
the ground truth posterior:

Lfingerprint = Et∼U{1,T},q(xt|x0) [KL (q(xt−1|xt,x0), p(xt−1|xt))] . (13)
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During inference, we start with a random bit vector xT sampled from uniform Bernoulli distribution, and resample it
following p(xt−1|xt) for T steps.

SynFormer’s diffusion module has T = 100 timesteps and the hyper-parameter s controlling the noise schedule is set to
0.01. The DenoiserNet is a multi-layer perceptron, with input dimension 2,816 (dim(h) + dim(x)), hidden dimension
4096, output dimension 2,048 (fingerprint size), and ReLU activation in between.

A.2 Training details

A.2.1 Training data generation

We generate random postfix notations of synthesis using the building blocks and reaction templates from the database
to train SynFormer. To ensure the validity of generated postfix notations, we leverage the synthesis stack data
structure introduced in our previous model [67] to store intermediate reaction products during synthesis. When training
SynFormer-ED, the generated postfix notation is used to supervised the decoder part and the SMILES string of the final
product is used as the input to the encoder part. For SynFormer-D, only postfix notations are used to train the model.
The detail of this data generation procedure is described in Algorithm 1.

Algorithm 1: Training data generation [67]
Input: mr, maximum number of reactions
Input: ma, maximum number of atoms in the final product molecule
Input: F : M 7→ {R}, a function that returns available reactions for molecule M
Input: H : R 7→ {M}, a hash map that stores eligible molecules for each reaction
Output: an iterator of postfix notation and product molecule tuples (P, S. top())

1 S ← [] ; // Initialize empty stack
2 P ← [] ; // Initialize empty postfix notation
3 B0 ← a random building block;
4 Push(B0 onto S);
5 Append(B0 to P);
6 Yield(P , S. top());
7 while P. countReactions() < mr and S. top(). countAtoms() < ma do
8 R ∼ R(S. top()) ; // Randomly choose a reaction according to the molecule on the stack

top
9 for i = 1 to R.numReactants−S. length() do

10 Bi ∼ H(R) subject to Bi and the molecules in S can react via R;
11 Push(Bi onto S);
12 Append(Bi to P);
13 {Xi} ← Pop(R.numReactants elements from S);
14 Y ← Call R({Xi});
15 Push(Y onto S);
16 Append(R to P);
17 if S. length() = 1 then
18 Yield(P , S. top());

A.2.2 Hyper-parameters

The SynFormer models are trained using the AdamW optimizer with a learning rate of 3× 10−4 and a batch size of
1,024. The training process spans approximately 730,000 steps, equivalent to a total of 742M data points. Validation is
performed every 5,000 steps. A ReduceLROnPlateau scheduler is applied, reducing the learning rate by 20% if the
validation loss does not improve over the last 10 validation runs. The models are trained on 8 A100 GPUs, and the total
training time is about 6 days and 1 hours.
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A.3 Inference details

A.3.1 Sampling algorithm

The sampling process starts with an empty stack and an empty postfix notation. The stack and the postfix notation are
updated iteratively as described in Algorithm 2. Specifically, the SynFormer decoder first outputs the embedding vector
and predicts the type for the next token based on the current postfix notation.

If the next token is predicted to be a building block, the diffusion module will generate a set of kfingerprint fingerprints.
For each fingerprint, the building block molecule with the most similar fingerprint measured by L2 distance is retrieved
from the database. kfingerprint copies of the previous stack and postfix notation are made and each building block is added
to the stack and the notation of each copy, leading to kfingerprint different next states.

If the next token is predicted to be a reaction, kreaction reactions with the highest probability are selected. For each
selected reaction, the required number of reactants are popped out of the stack. If there are too few molecules in the
stack, the reaction is considered inapplicable. Then, the reactants are input to the reaction template to predict the
product. If the reaction runs successfully, the reaction product will be pushed onto the stack and the reaction itself will
be appended to the postfix notation to form a next state. Otherwise, the reaction will be ignored and no next state for
this reaction is produced.

Finally, if the next token is an [END] token, we will check if the stack contains exactly one molecule. If it does, the
sampling process is considered successful and the only molecule on the stack is the final product. Otherwise, more than
one molecule in the stack means the synthesis process is incomplete and thus is considered failed.

A.3.2 Branched sampling

The sampling algorithm can lead to branched synthesis pathways at each building block and reaction step. This capability
is particularly useful when a specific objective, for example similarity to a given molecule in analog generation, is set.
We leverage this capability by formulating a beam-search-like algorithm as described in Algorithm 3. Specifically, we
maintain a pool of states and each state is a tuple of synthesis stack and postfix notation. In the beginning, the pool
contains only one empty state. At each state, we run the sampling step (Algorithm 2) for each state in the pool, remove
the existing state, and add the set of next generated states back to the pool. If the pool size exceeds the limit, we sort the
state according to the some given metric and then keep only the top-ranked states. If a state is marked successful, it will
be moved out of the pool and added to the result buffer.
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Algorithm 2: Sampling step
Input: Pprev, previous postfix notation of synthesis
Input: Sprev, previous synthesis stack
Input: c, features from the encoder part of SynFormer, optional
Input: kreaction, branching factor of reaction
Input: kfingerprint, branching factor of building block fingerprint
// Global variables: SynFormer, BuildingBlockDatabase
Output: an iterator of next states in the form of postfix notation and stack tuple (P, S)

1 h← SynFormer.decoder(embed(Pprev), c) ; // Get the embedding for the next token
2 t← SynFormer.predictNextType(h) ; // Predict the type of the next token

3 if t = BuildingBlock then
4 foreach x in SynFormer. generateFingerprints(h, kfingerprint) do
5 P, S ← copy(Pprev, Sprev);
6 X ← BuildingBlockDatabase. retrieve(x);
7 Push(X onto S);
8 Append(X to P);
9 Yield(P , S);

10 else if t = Reaction then
11 foreach R in top kreaction of SynFormer.predictNextReaction(h) do
12 P, S ← copy(Pprev, Sprev);
13 {Xi} ← Pop(R.numReactants elements from S);
14 Y ← Call R({Xi});
15 if there are sufficient reactants in the stack and the reaction applied successfully then
16 Push(Y onto S);
17 Append(R to P);
18 Yield(P , S);

19 else if t = [END] then
20 if Sprev. length() = 1 then
21 Yield(Pprev, Sprev, EndFlag);

Algorithm 3: Branched sampling
Input: kreaction, branching factor of reaction
Input: kfingerprint, branching factor of building block fingerprint
Input: m, size limit of the state pool
Input: n, expected number of outputs
Input: f(·), scoring function
Data:M← {(P0, S0)} where P0 = ∅ and S0 = ∅, initial state pool
Data: N ← {}, output buffer

1 while |N | < n do
2 foreach (P, S) inM do
3 Remove((P, S) fromM);
4 foreach (Pnext, Snext, hasEndFlag) in SamplingStep(P, S, c, kreaction, kfingerprint) do
5 if hasEndFlag then
6 Add((Pnext, Snext) to N) ; // Save to output buffer
7 else
8 Add((Pnext, Snext) toM) ; // Add to the state pool

9 Sort(M according to the scoring function f(S));
10 M←M[1 . . .m];
11 Return(N)
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B Additional results

B.1 Impact of enlarged fingerprint length on performance

The length of Morgan fingerprints is a critical parameter that determines the resolution of molecular fingerprinting.
Shorter fingerprint lengths can lead to bit collisions, where two similar molecules become indistinguishable due to the
limited bit space [115]. However, directly predicting larger fingerprint lengths has proven challenging to scale (see
Figure 14 in the SI of [65]), often necessitating a compromise at shorter lengths, such as 256 bits.
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Figure 6: Effect of fingerprint length (256, 512, 1024, and 2048) on reconstruction performance on molecules sampled
from ChEMBL. The left panel shows the Reconstruction Rate, while the right panel displays the Average Similarity.
Both metrics indicate that longer fingerprints enhance model performance. All models were trained for an identical wall
time of 24 hours and used the same hyperparameters, except for the varying fingerprint lengths and the corresponding
network widths.

The introduction of the diffusion module offers greater flexibility in handling longer fingerprint lengths. We trained
models with varied fingerprint lengths (256, 512, 1024, and 2048 bits), all under identical conditions: a fixed training
duration of 24 hours and consistent hyperparameters, except for adjustments in fingerprint length and the corresponding
network widths. The models were evaluated on their reconstruction performance using ChEMBL samples, as shown in
Figure 6. The results demonstrate that increasing the fingerprint length significantly enhances model performance, with
a shift from 256 bits to 2048 bits resulting in an increase in the reconstruction rate from 8% to 12%, representing a
50% improvement. These findings indicate that the diffusion module not only strengthens the modeling of molecular
fingerprints but also scales effectively to longer fingerprints, enabling more precise nearest neighbor searches with
higher resolution.
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B.2 Synthesizable analog generation

This section provides additional results for synthesizable analog generation, focusing on two sets of experiments: (1)
finding synthesizable analogs for de novo design efforts using the GuacaMol benchmark [76] (where scores range
from 0 to 1, with higher scores indicating better performance), and (2) generating molecules with Pocket2Mol [82], a
structure-based design algorithm.
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Figure 7: Relationship between similarity to the target molecule and the change in objective value. The contour plot
shows the density of data points, indicating that higher similarity to the target molecule is generally associated with
neutral changes in the objective value. This suggests that closer matches to the target tend to maintain the main objective
score. The distribution highlights that a significant fraction of outputs exhibit neutral changes in objective scores.

Figure 7 presents the density plot of all molecules generated for unsynthesizable designs within the GuacaMol
benchmark, plotted along the similarity to the target axis and the change in the main objective score axis. The results
indicate that a substantial fraction of generated molecules exhibit relatively neutral changes in the main objective
score, suggesting that the primary design objectives are largely preserved during analog generation. This is particularly
evident for molecules with higher similarity to the target, which are clustered around zero change in the objective value,
demonstrating that structurally similar analogs tend to retain their original objective scores.

However, the distribution also reveals a region characterized by low similarity and significant negative changes in
objective scores, indicating instances where the model fails to generate meaningful analogs. These cases often result
in outputs resembling random generation, highlighting the model’s limitations in some regions of the chemical space.
This failure is partly due to the limited coverage of the explored chemical space compared to the theoretical coverage
and partly due to the unsynthesizable input molecule being too distant from the synthesizable chemical space, making
the “projection” unrealistic or irrelevant.

Figure 8 illustrates the distribution of Synthetic Accessibility (SA) Scores for molecules designed using Pocket2Mol
(labeled as Target) and their corresponding generated analogs (labeled as Analog). The plot reveals a noticeable shift in
the Analog distribution towards lower SA Scores, suggesting that the analog molecules are generally easier to synthesize
compared to the original Pocket2Mol designs.
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Figure 8: Distribution of SA Scores for molecules designed using Pocket2Mol (denoted as Target) and their corre-
sponding analogs (denoted as Analog). The shift of the Analog distribution towards lower SA Scores indicates that the
generated analog molecules are generally easier to synthesize compared to the original designs from Pocket2Mol.

Figure 9: Synthetic pathways for Perindopril MPO optimization examples as shown in the main text.
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Figure 10: Additional examples of synthesizable analog generation for previously unsynthesizable designs. Each panel
shows the transformation from the target molecule (left) to the product molecule (right), with objective scores indicating
the performance of each molecule in the optimization task. The synthetic routes for the synthesizable analogs are shown
below each panel, demonstrating the practical feasibility of the proposed transformations.
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B.3 Hit expansion

This section provides additional results for hit expansion experiments, including (1) expanding hits from screening
ZINC250k with activity predictors and (2) expanding from experimentally verified binders of disease targets.

In addition to JNK3, which is discussed in the main text, we also evaluated SynFormer on GSK3β. Figure 11 displays
contour plots comparing the density of molecules generated by SynFormer with those identified by the nearest neighbor
approach for both JNK3 and GSK3β. These plots illustrate the performance differences between the two methods in
lead expansion. Additionally, Figure 12 presents the top-10 molecules identified from screening the ZINC250k database
using each activity predictor.
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Figure 11: Comparison of hit expansion performance between SynFormer (red contours) and Nearest Neighbor (blue
contours) approaches for JNK3 (left) and GSK3β (right). The contour plots show inhibition scores versus Tanimoto
similarity to the input hit compound. The dashed line represents the inhibition level of the best hit compound.

The density plots comparing analog discovery by nearest neighbor and SynFormer highlight that SynFormer consistently
outperforms the nearest neighbor approach in identifying higher-scoring molecules in both tasks. As discussed in the
main text, both SynFormer and nearest neighbor search identified molecules with predicted JNK3 inhibition scores
higher than the best hits from initial screening, and SynFormer successfully found molecules with higher score than
the highest one from the nearest neighbor search. For GSK3β, the nearest neighbor approach failed to find molecules
approaching the highest inhibition values of the original hits, whereas SynFormer succeeded. This is also demonstrated
in Figure 13. Although nearest neighbor search showed enrichment in regions of higher similarity to the input references,
molecules with scores exceeding those of the input references were often found at moderate similarity levels, ranging
from 0.5 to 0.8. This observation suggests that SynFormer’s ability to explore beyond close structural analogs allows it
to identify more potent molecules while maintaining a reasonable balance between structural similarity and enhanced
activity.
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(a) Hits for JNK3 identified from screening the ZINC250k database, with the predicted probability of being active labeled above
each hit.

(b) Hits for GSK3β identified from screening the ZINC250k database, with the predicted probability of being active labeled above
each hit.

Figure 12: Hits identified from screening the ZINC250k database, which are subsequently used as inputs to the
SynFormer for hit expansion.
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Figure 13: Normalized density plots of inhibition scores for JNK3 (top) and GSK3β (bottom) showing the performance
of SynFormer (red), nearest neighbor search (blue), and the initial ZINC250k screening (green). SynFormer consistently
generates molecules with higher inhibition scores compared to the nearest neighbor and ZINC250k hits, demonstrating
its superior capability in identifying potent analogs for both targets.

Figure 14: Additional examples of molecules generated from the hit against JNK3, along with their predicted inhibition
scores between 0 and 1 and corresponding synthetic pathways.
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Figure 15: Additional examples of molecules generated from the hit against GSK3β, along with their predicted
inhibition scores between 0 and 1 and corresponding synthetic pathways.
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Figure 16: Additional examples of molecules generated from the hit against PKM2.
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Figure 17: Additional examples of molecules generated from the hit against KAT2A.
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B.4 Global chemical space exploration by de novo molecular optimization

B.4.1 Molecular optimization using reinforcement learning

This section describes additional results for using reinforcement learning to bias the generation of SynFormer-D toward
high-scored molecules.

Figure 18a presents the score distribution of molecules generated by the SynFormer model after exposure to 5,000,
10,000, 15,000, 20,000, 25,000, and 30,000 labeled molecules and their corresponding scores. As the model processes
more score-labeled data, the generation progressively shifts toward higher-scoring regions, demonstrating the effective-
ness of the reinforcement learning (RL) algorithm in guiding the model toward optimized outputs. Figure 18b shows
the accumulation of the top-100 molecules throughout the optimization process. The results indicate that the model’s
performance saturates at the maximum score of around 1.0 after approximately 18,000 oracle evaluations, confirming
the RL approach’s ability to consistently identify top-performing molecules.
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(a) Score distribution of 200 molecules generated by SynFormer at different optimization steps,
demonstrating that reinforcement learning effectively biases the generation distribution towards
higher-scoring molecules.

0.2 0.4 0.6 0.8 1.0
DRD2

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d 
De

ns
ity Oracle Calls

3000
6000
9000
12000
15000
18000

(b) Score distribution of the accumulated top-100 molecules at various optimization steps, highlight-
ing the progression and refinement of high-scoring molecules throughout the optimization process.

Figure 18: Additional results for SF-RL, the fine-tuned version of SynFormer-D using an approach adapted from
REINVENT.

B.4.2 Molecular optimization using genetic algorithm

This section describes additional results for using a genetic algorithm with SynFormer-ED as a mutation.

Figure 19, 20, and 21 display the distribution of SA Scores [42] for the top 25 molecules at various optimization steps
during the optimization of Perindopril MPO, Ranolazine MPO, and Scaffold Hop, respectively. In these tasks, since the
main objective functions do not penalize synthetic accessibility, the differences between the standard GraphGA and
GraphGA-SF are less pronounced compared to those observed in the Sitagliptin MPO task discussed in the main text.
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Figure 19: Distribution of SA Scores [42] for the top 25 molecules at various optimization steps, with colors representing
objective scores.
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Figure 20: Distribution of SA Scores [42] for the top 25 molecules at various optimization steps, with colors representing
objective scores.
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Figure 21: Distribution of SA Scores [42] for the top 25 molecules at various optimization steps, with colors representing
objective scores.
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