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Abstract

Computer-aided synthesis planning (CASP) algorithms have demonstrated expert-
level abilities in planning retrosynthetic routes to molecules of low to moderate
complexity. However, current search methods assume the sufficiency of reaching
arbitrary building blocks, failing to address the common real-world constraint
where using specific molecules is desired. To this end, we present a formulation
of synthesis planning with starting material constraints. Under this formulation,
we propose Double-Ended Synthesis Planning (DESP), a novel CASP algorithm
under a bidirectional graph search scheme that interleaves expansions from the
target and from the goal starting materials to ensure constraint satisfiability. The
search algorithm is guided by a goal-conditioned cost network learned offline
from a partially observed hypergraph of valid chemical reactions. We demonstrate
the utility of DESP in improving solve rates and reducing the number of search
expansions by biasing synthesis planning towards expert goals on multiple new
benchmarks. DESP can make use of existing one-step retrosynthesis models, and
we anticipate its performance to scale as these one-step model capabilities improve.

1 Introduction

Synthesis planning—proposing a series of chemical reactions starting from purchasable building
blocks to synthesize one or more target molecules—is a fundamental task in chemistry. For decades,
chemists have approached the challenge of synthesis planning with retrosynthetic analysis [1, 2], the
strategy by which a target molecule is recursively broken down into simple precursors with reversed
reactions. In recent years, advances in machine learning have enabled a multitude of computer-aided
synthesis planning (CASP) algorithms [3–6] that navigate a combinatorially large space of reactions
to propose chemically sensible routes to a variety of drug-like molecules within seconds to minutes.
However, fully data-driven algorithms still underperform when generalizing to realistic use cases such
as planning for more complex targets or in constrained solution spaces. In practice, expert chemists
may plan syntheses with specific starting materials in mind, called “structure-goals" [1], that constrain
the solution space. For instance, efficient syntheses of highly complex drugs are often most practical
when synthesized from naturally-occurring starting materials that share complex features with the
target, a practice known as “semi-synthesis" [7, 8]. There is also immense interest in identifying
pathways from waste or sustainable feedstocks to useful chemicals [9–11], but existing methods have
thus far relied on heuristics and brute-force enumeration of reactions.

Though algorithms for planning synthetic routes from expert-specified starting materials have been
proposed [12, 13], the vast majority of CASP algorithms today cannot address starting material-
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Figure 1: (a) Existing search methods are single-ended, and aim to identify a synthetic route where
all leaf nodes meet certain termination criteria, e.g., buyability. (b) DESP is a bidirectional search
algorithm that enables a double-ended starting material-constrained search, better reflecting certain
real-world use cases in complex molecule synthesis planning. Empirically, double-ended search finds
starting material-constrained solutions with fewer node expansions.

constrained use cases, as they assume that solution states may comprise any combination of building
blocks. It is non-trivial to extend from “general" retrosynthesis planning to the constrained setting;
by requiring a solution to contain a specific goal molecule, starting material-constrained synthesis
planning presents the challenge of simultaneously guiding a search towards this goal molecule and
any other necessary buyable molecules.

In this paper, we address these challenges by proposing a strategy for starting material-constrained
synthesis planning with a bidirectional search algorithm and a goal-conditioned cost network learned
offline from expert trajectories implicit to a validated reaction corpus. Given a target molecule and one
or more specified starting materials, our Double-Ended Synthesis Planning (DESP) algorithm takes
advantage of the natural reversibility of retrosynthesis by instantiating two AND-OR search graphs
and alternately performing retrosynthetic expansions and forward synthetic expansions. We present
two variations of DESP based on front-to-end (F2E) and front-to-front (F2F) bidirectional search. In
F2E search, each direction of the search is conditioned on the root node of the opposing search graph,
while in F2F, each search is conditioned on the “closest" nodes of the opposing search graph. In
both cases, finding solutions is accelerated when the “bottom-up" search graph converges with the
“top-down” retrosynthesis search graph. Each step of selection and expansion of bottom-up nodes is
conditioned on a specific molecule in the retrosynthetic graph, and we devise a means of utilizing
both our goal-conditioned cost network and an existing cost network for general retrosynthesis in the
top-down search policy. The goal-conditioned cost network, which we term the “synthetic distance"
network, is trained offline based on the observation that multi-step synthetic routes can be interpreted
as expert plans where any of the non-root molecules represents a starting material goal for the final
target molecule, thus bypassing the need for self-play using reinforcement learning (RL). In order to
train the network on “negative experiences", we also sample pairs of molecules between which no
path exists through known reactions. Our contributions can be summarized as follows:

• We provide a formulation of starting material-constrained synthesis planning and release the first
benchmarks for evaluating algorithms on this task, including new real-world benchmarks collected
from the Pistachio database [14] addressing redundancies in the widely-used USPTO-190 test set.

• We present a starting material-constrained neural bidirectional search algorithm to tackle double-
ended synthesis planning. Specifically, we present a cost network that estimates the “synthetic
distance" between molecules (instead of the distance between a molecule and arbitrary purchasable
building blocks) and an A*-like bidirectional search algorithm that strictly reflects the constraints.

• We present strong empirical results that illustrate the efficiency of double-ended synthesis planning.
Compared to existing algorithms, DESP expands fewer nodes and solves more targets under goal
constraints, demonstrating its value in biasing CASP algorithms towards expert goals.

2 Background

2.1 Related work

Computer-aided retrosynthetic analysis Retrosynthetic analysis has traditionally been formulated
as a tree search problem, where each step involves searching for chemically feasible transformations
and corresponding reagents to derive the product molecule. In defining the feasible transformation,
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template-based methods select graph transformation rules to apply based on expert rules [15] or
use data-driven methods [16–18], such as a neural network policy trained on a reaction corpus [19].
Template-free methods frame one-step retrosynthesis prediction as a translation task of SMILES
strings [20, 21] or a graph-edit prediction [22]. In searching for multi-step synthetic pathways,
the focus of late has been on selecting non-terminal nodes for expansion. Initial efforts relied on
expert-defined rules and heuristics [2, 15], whereas more recent efforts combine neural networks
and Monte Carlo Tree Search (MCTS) [3], as well as AND-OR graph searches that address the
hypergraph complexity of reaction routes [23, 6, 4, 24]. Notably, Chen et al. [6] proposed Retro*, a
neural-guided A*-like search algorithm that we build on as part of our approach. Much additional
work has been done to improve multi-step CASP algorithms [25–32], primarily via improvements
of single-step policies in a multi-step context or value functions for improved search guidance.
Unlike DESP, these methods do not address the problem formulation where the pathway search is
constrained by one or more starting materials, as shown Fig. 4. One exception is GRASP [13], which
utilizes RL with hindsight experience replay [33] for goal-conditioned value estimation. Additionally,
starting material-oriented planning capablities were implemented in the LHASA program [12] but
rely entirely on expert-defined rules. In this work, we instead train a cost network offline using
historical reaction data and use bidirectional search to augment the retrosynthesis planner.

Synthesizable molecular design Recent advances in computer-aided molecular design have intro-
duced novel approaches to synthesis planning. To ensure high synthetic accessibility of designed
molecules, researchers have proposed assembling compounds in silico by applying valid chemical
transformations to purchasable building blocks, effectively searching for molecules within a reaction
network [34–39]. The advent of deep generative modeling has further enabled the generation of
synthetic pathways with neural models [40–44]. These methods commonly employ a bottom-up
strategy, constructing synthetic pathways from building blocks to the final product. Gao et al. [42]
proposed that this framework could enable “bottom-up synthesis planning," in which the goal of
generation is to match a specified target molecule, and demonstrated the successful application of this
approach despite a low empirical reconstruction rate. In this work, we build upon Gao et al. [42]’s
method of conditional synthetic route generation by increasing the number of reaction templates,
training on a larger reaction corpus, and integrating the models into a bidirectional search algorithm.

Bidirectional search Bidirectional search is a general strategy that can accelerate search in prob-
lems that involve start and goal states by interleaving a traditional search from the start state and a
reverse search from the goal state [45], usually guided with either neural networks or expert heuristics.
It has demonstrated utility in problems such as robotic path planning [46, 47], program synthesis [48],
traffic management [49], and puzzle solving [50]. However, the application of bidirectional search in
synthesis planning has not been explored. When integrating an informed method of evaluating nodes,
bidirectional search can be divided into front-to-end (F2E) and front-to-end (F2F) strategies [51, 52].
In F2E search, evaluations are made by estimating the minimal cost of a path between a frontier node
and the opposite goal, while in F2F search, evaluations are made by estimating the minimal cost of
a path between opposing frontier nodes. In this work, we implement both F2E and F2F variants of
DESP to observe the empirical differences between the strategies in the synthesis planning setting.

2.2 Formulation of general and starting material-constrained synthesis planning problems

General synthesis planning In this work, we only consider template-based retrosynthesis methods,
though any single-step model is compatible with our algorithm. Let M be the set of all valid
molecules, R be the set of all valid reactions, and T be the set of all valid reaction templates. A
reaction Ri ∈ R is a tuple (ri, pi, ti), comprising a set of reactants ri ⊂ M, a single product
pi ∈ M, and a retro template ti ∈ T . A retro template t is a function t :M → 2M that maps a
product to precursors such that ∀i : ri ∈ ti(pi). Likewise, a forward template t′ ∈ T ′ is a function
t′ : 2M →M where ∀i : pi ∈ t′(ri).

Given target molecule p∗ ∈M and set of building blocks (BBs) B ⊂M, synthesis planning finds a
valid synthetic route—a set of reactions S = {R1, . . . Rn} that satisfies the following constraints.

Constraint 1 (Synthesize all non-BBs). ∀ i : m ∈ ri,m /∈ B =⇒ ∃ j s.t. m = pj ;

Constraint 2 (Target is final molecule synthesized). ∃ i s.t. pi = p∗,∀ i : p∗ /∈ ri;
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Finally, we require that the graph formed by S is a directed acyclic graph (DAG), where for each
i, the product pi is mapped to a node, which has a directed edge to a node mapping to reaction Ri,
which in turn has directed edges to nodes mapping to the reactants ri.

Starting material-constrained synthesis planning Given a specific starting material (s.m.)
r∗ ∈ M, in addition to Constraint 2, a valid synthetic route satisfies the following constraints.
Constraint 3 (s.m. used). ∃ i s.t. r∗ ∈ ri, ̸ ∃ j s.t. r∗ ∈ pj ;
Constraint 4 (s.m. not necessarily BB). ∀ i : m ∈ ri, m /∈ B ∪ {r∗} =⇒ ∃ j s.t. m = pj ;

Fig. 1b illustrates an example of a valid starting material-constrained route found through bidirectional
search. DESP can also be used for the more general form of the problem in which a set of potential
starting materials {r∗1 , . . . r∗n} is given on input, and at least one leaf node must map to r∗i for some
1 ≤ i ≤ n. For simplicity, we only consider the single r∗ case unless otherwise specified.

3 Methods

DESP is built on the Retro* algorithm [6] and recent advances that enable conditional generation of
synthetic routes from the bottom up [41, 42].

3.1 Definition of synthetic distance, a goal-conditioned cost function

Like Retro* [6], DESP is an A*-like search and thus requires a method of evaluating the expected cost
of various frontier nodes. We follow Retro* and use the notation of Vt(m|T ), Vm, and rn functions
(Section A.2 details Retro* and these functions). We also define a function c : R → R which maps
a reaction to a scalar cost. For a valid synthetic route S = {R1, . . . , Rn}, the total cost of S is∑n

i=1 c(Ri). Vm represents the minimum total cost across every valid synthetic route to molecule m,
and is learned in Retro* and DESP to bias the search towards B.

However, to maintain consistency in guiding A* search in the starting material-constrained setting,
we require not only an estimate of the cost of synthesizing molecule m from arbitrary building
blocks, but also an estimate of the cost of synthesizing molecule m2 from m1 specifically (in
addition to other arbitrary building blocks). As such, we define a new function D :M×M→ R,
which we term synthetic distance, as it effectively represents the minimum cost distance between two
molecules in G, the graph constructed from the set of all possible reaction tuplesR. More precisely,
the synthetic distance from m1 to m2 is the difference between the minimum cost of synthesizing m2

across all valid synthetic routes containing m1 and the minimum cost of synthesizing m1 across all
valid synthetic routes in general. Learning D then allows for the guidance of both top-down search
towards the starting material and bottom-up search towards the target with rapid node comparisons.

3.2 DESP algorithm overview

In practice, synthesis planning problems are generally approached by simulating a search through
the complete reaction graph G. We follow Xie et al. [30] in considering an AND-OR graph structure
for search graphs, in which molecules are represented by OR nodes (only one child must be solved)
and reactions are represented by AND nodes (all children must be solved). In implementing most
synthesis planning algorithms [3, 6], one initializes the search graph G = {p∗}. With DESP, we
instead initialize two search graphs GR = {p∗}, GF = {r∗} and introduce two expansion policies,
one for “top-down" retrosynthesis expansions on GR and another for “bottom-up" forward expansions
on GF . This allows us to perform a bidirectional graph search between the target and goal molecules
by interleaving retro and forward expansions, with the goal of the two search graphs converging to
more efficiently find a valid synthetic route. In this work, we implement F2E and F2F variants of
DESP. Notably, our implementation of F2F performs node comparisons to all nodes in the opposing
search graph rather than just frontiers. For m ∈ GR, we define a goal function γ :M→M such
that γ(m) = r∗ in F2E and γ(m) = argming′∈GF

D(g′,m) in F2F. Likewise, for m ∈ GF , let
γ(m) = p∗ in F2E and γ(m) = argming′∈GR

D(m, g′) in F2F.

The following quantities or functions are relevant in the algorithm: rn, Vt(m|G), and Vm from
Retro*, and somewhat analogously dn, Dt(m|GR), and Dm. We briefly define the new quantities:
(1) Dm represents D(γ(m),m). (2) dn(m|GR) represents the “distance numbers" of a top node m.
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Figure 2: (a) DESP algorithm. Evaluation of top nodes is based on both Vm and Dm. For F2E
search, synthetic distance is calculated between a molecule and the opposing goal, while for F2F,
it is calculated based on the closest opposing molecule. (b) Overview of the one-step expansion
procedures.

This is a multiset of values Dm − Vm for related frontier nodes collected for dynamic programming
from the bottom-up during the update phase. (3) Dt(m|GR) is a multiset of all values of Dm − Vm

across frontier nodes in the minimum cost synthetic route to the target p∗ through molecule m. At a
high level, we introduce these quantities and new policies to account for the fact that only one subgoal
in a valid synthetic route needs to reach r∗. The top-down searcher of DESP is thus an extension of
Retro* that simultaneously utilizes general retrosynthesis and synthetic distance cost networks.

Like most CASP algorithms, DESP cycles between steps of selection, expansion, and update until
the termination criteria are satisfied. However, DESP also alternates between performing these steps
for the top-down and bottom-up search graphs (Fig. 2), with each search having its own policies.

Selection For top-down selection, we select an frontier molecule node that minimizes the expected
total cost of synthesizing the target p∗ from the goal molecule r∗ through that node. Let FR represent
the set of frontier top molecules and FF represent the set of frontier bottom molecules. Then,

mselect,R ← argmin
m∈FR

[Vt(m|GR) + min(Dt(m|GR))] (1)

The bottom-up selection policy is identical to that of Retro*.

mselect,F ← argmin
m∈FF

Vt(m|GF ) (2)

Expansion For top-down expansion, we follow other AND-OR-based algorithms in calling a
single-step retrosynthesis model, applying the top n predicted templates to the selected node
and adding the resulting reactions and their precursors as nodes to the graph. For each added
molecule node mi, we initialize: (1) rn(mi|GR) ← Vmi

, equal to the Retro* value function, and
(2) dn(mi|GR) ← {Dmi

− Vmi
} = {D(γ(mi),mi) − Vm}.

For bottom node m, we perform the forward expansion procedure detailed in Section 3.3, conditioned
on γ(m). For each added product pi, we then initialize rn(pi|GF ) ← Vpi

= D(pi, γ(pi))

5



Update For GR, we propagate updates to relevant values up the graph and then back down to
related nodes, similar to other AND-OR algorithms. As the update rules for the Retro* quantities are
the same, we only provide the update rules for the new quantities, and details of the Retro* updates is
in Section A.2. GF is also updated according to the Retro* algorithm (as branching from multiple
product OR nodes is not allowed in forward expansions), so the following new updates only apply
to GR. We first uppropagate, performing updates up the graph for reaction (AND) nodes R and
molecule (OR) nodes m, where the ch and pr functions return the children and parent nodes for an
input node:

dn(R|GR)←
∑

m∈ch(R)

dn(m|GR) (3)

dn(m|GR)←

{
[Dm − Vm] if x ∈ FR

dn
(
argminR∈ch(m) rn(R)

∣∣∣GR

)
otherwise

(4)

We then downpropagate the following updates:

Dt(R|GR)← dn(pr(R)|GR)− dn
(
argminR′∈ch(pr(R)) rn(R

′|GR)
∣∣∣GR

)
+ dn(R|GR) (5)

Dt(m|GR)← Dt

(
argminR∈pr(m) rn(R|GR)

∣∣∣GR

)
(6)

Justification for the rules and additional details, including DESP pseudocode, is in Section A.5.

3.3 Forward expansion policy with conditional generation of one-step reactions

To perform forward one-step synthesis expansions, we adapt the approach of Gao et al. [42]. Let
znm :M→ Rn and znt : T → Rn be functions mapping a molecule and template (respectively) to
n-dimensional embeddings. We define two target functions:

ft :M×M→ T ′ ≈ σ(MLPt(z
n
m(m1)⊕ znm(m2))) (7)

fb :M×M×T ′ → B ≈ k-NNB(MLPb(z
n
m(m1)⊕ znm(m2)⊕ znt (t

′))) (8)

Together, the learned approximations of ft and fb define our forward expansion policy (Algorithm 1),
which generates forward reactions for the expanded node m1 conditioned on m2.
Algorithm 1: FORWARD_EXPAND(m1, m2, GF , N , K)
m1: molecule selected for expansion, m2: molecule to condition expansion on, GF : bottom
search graph, N : num. templates to propose, K: num. building blocks to search
t′ ← TOP_N(σ(MLPt(zm(m1)⊕ zm(m2)))) ; /* Get top N forward templates */
for i← 1 to N do

if t′[i] is unimolecular then
p← t′[i](m1) ; /* Apply fwd. template to m */
GF .ADD_RXN({m1}, p, t′[i]) ; /* Add reaction and product to GF */

else /* t′[i] is bimolecular */
b← KNNB(MLPb(zm(m1)⊕ zm(m2)⊕ zt(t

′[i]))) ; /* Get K nearest BBs by
cosine sim. */
∀j ← 1 to K: GF .ADD_RXN({m1, b}, t′[i](m1, b[j]), t

′[i]) ; /* Apply t′[i] */
end

end

3.4 Extracting multi-step reaction data from a reaction corpus for offline learning

To learn ft, fb, and D, we approximate G by generating the incomplete network from a reaction
dataset. In this work, we use the public USPTO-Full dataset [53, 54] of approximately 1 million
deduplicated reactions. The dataset is filtered and processed (details in Section A.3), and a template
set TUSPTO is extracted with RDChiral [55]. The dataset is randomly divided into training and
validation splits with ratio 90:10. From the training splitRUSPTO we construct the graph GUSPTO. We
filter reactions that (1) involve more than 2 reactants or (2) whose product cannot be recovered by
applying the forward template t′, yieldingRFWD, GFWD, and T ′

FWD.
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Table 1: Benchmark dataset summary. Avg. In-Dist. % is the mean percentage of reactions in each
route within the top 50 suggestions of the retro model. Unique Rxn.% is the ratio of deduplicated
reactions to total reactions across all routes. Avg. # Rxns. is the mean number of reactions in each
route, and Avg. Depth is the mean number of reactions in the longest path of each route.

Dataset # Routes Avg. In-Dist. % Unique Rxn. % Avg. # Rxns. Avg. Depth

USPTO-190 190 65.6 50.5 6.7 6.0
Pistachio Reachable 150 100 86.1 5.5 5.4
Pistachio Hard 100 59.9 95.2 7.5 7.2

To learn ft and fb, a full enumeration of all pathways (until reaching nodes in B) rooted at p∗ is
performed for each molecule node p∗ in GFWD. Reaction nodes in the enumerated pathways then
each provide a training example for ft and fb. Likewise, we enumerate pathways in GUSPTO, and each
molecule node m in a pathway yields a training example for learning D(m, p∗). The details for our
training procedures are described in Section A.4.

Notably, we inject “negative" examples into our training set for D, as the distribution of costs is
highly skewed towards low values. We define a modified MSE loss function as in Kim et al. [56] for
learning D:

L =

{
(ypred − ytrue)

2 if ytrue ≤ Dmax

max(0, Dmax + 1− ypred)
2 else

(9)

This strategy allows the model to default to an approximate value of Dmax + 1 for any “highly
distant" molecule inputs. Now, for each target p∗, we randomly sample a molecule m ∈ GUSPTO with
no path to p∗ and Tanimoto similarity < 0.7 and add a training example with label∞. In this work,
we use Dmax = 9.

4 Experiments

Our experiments are designed to answer the following: (1) Does DESP significantly improve the
performance of starting material-constrained synthesis planning compared to baseline methods?
(2) To what extent do D and bidirectional search account for the performance of DESP? (3) Can DESP
find routes to more complex targets than baseline methods? (4) What empirical differences do we see
between F2E and F2F strategies?

4.1 Experimental setup

Datasets Few public datasets of multi-step synthetic routes exist. Previous works in multi-step
synthesis planning have widely used the USPTO-190 dataset [6], a set of 190 targets with corre-
sponding routes extracted from the USPTO-Full dataset. Others have tested on targets sampled from
databases such as ChEMBL or GDB17 [57, 27, 31], but their lack of ground truth routes precludes
the systematic selection of starting materials for our task. PaRoutes [58] has been proposed as an
evaluation set, but they do not provide a standardized training set to prevent data leakage.

In addition to USPTO-190, because of its large proportion of out-of-distribution and redundant
reactions (Table 1), we create and release two additional benchmark sets, which we call Pistachio
Reachable and Pistachio Hard. Details of their construction are provided in Section A.6. To obtain
the ground-truth goal molecules for each of our test sets, we find the longest path from target to leaf
node in each route DAG and pick the leaf node with more heavy atoms. For the building block set
B, we canonicalize all SMILES strings in the set of 23 million purchasable building blocks from
eMolecules used by Chen et al. [6].

Model training As in [6], we train a single-step retrosynthesis MLP (NeuralSym) and Retro*
cost network on our processed training split of USPTO-Full. The synthetic distance and forward
expansion models are trained as described in Sections 3.4 and A.4.

Multi-step algorithms Because we utilize an AND-OR search graph with no duplicate molecule
nodes, our implementation of Retro* is more comparable to RetroGraph [30], but we do not employ
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Table 2: Summary of starting material-constrained planning performance across the three benchmarks.
Solve rate refers to the percentage of (p∗, r∗) pairs in the dataset solved at the given expansion limits.
The average number of expansions N is given for each method, with a max budget of 500.

Algorithm USPTO-190 Pistachio Reachable Pistachio Hard

Solve Rate (%) ↑ N ↓ Solve Rate (%) ↑ N ↓ Solve Rate (%) ↑ N ↓
N=100 300 500 50 100 300 100 300 500

Random 4.2 4.7 4.7 479 16.0 26.7 40.7 325 6.0 12.0 13.0 452
BFS 12.1 20.0 24.2 413 48.7 57.3 74.0 169 16.0 26.0 29.0 390
MCTS 20.5 32.1 35.3 364 52.0 72.7 85.3 111 27.0 31.0 32.0 361
Retro* 25.8 33.2 35.8 351 70.7 78.0 92.7 73 32.0 35.0 37.0 342
GRASP 15.3 21.1 23.7 410 46.7 51.3 66.7 198 14.0 22.0 29.0 402

Retro*+D 27.4 32.6 37.4 348 77.3 87.3 96.0 49 31.0 40.0 42.0 323
DESP-F2E 30.0 35.3 39.5 340 84.0 90.0 96.0 41 35.0 44.0 50.0 300
DESP-F2F 29.5 34.2 39.5 336 84.5 88.9 97.3 38 39.0 45.0 48.0 293

their GNN guided value estimation and thus refer to the algorithm as Retro* for simplicity. This
serves as both a baseline and ablated version of DESP (without bidirectional search or D). In addition,
we test the performance of random selection, breadth-first search (BFS), and MCTS. Finally, we
integrate our single-step model into GRASP [13] using the authors’ published code. Since their
data is not publicly available, we retrained their model on 10,000 randomly sampled targets in our
training set and run their search implementation on each benchmark. For all methods, we enforce a
maximum molecule depth of 11, a maximum of 500 total expansions (retro or forward), and apply
50 retro templates per expansion. For DESP, we also enforce a maximum molecule depth of 6 for
the bottom-up search, apply 25 forward templates per expansion, and use the top 2 building blocks
found in the k-NN search. Due to the asymmetry of the bidirectional search, we also introduce a
hyperparameter λ, the number of times we repeat a select, expand, and update cycle for GR before
performing one cycle for GF . For all experiments, we set λ = 2.

4.2 Results

Table 3: Average ± stdev of the number reactions
in proposed routes. Comparisons are made across
(p∗, r∗) pairs solved by all methods.

Dataset USPTO-190 Pistachio Easy Pistachio Hard
# Routes 63 139 36

Avg. # Rxns. ↓
Retro* 5.56 ± 2.37 4.94 ± 2.27 4.81 ± 2.09

Retro*+D 5.87 ± 2.37 4.92 ± 2.27 4.80 ± 2.08

DESP-F2E 5.56 ± 2.55 4.86 ± 2.17 4.67 ± 2.35

DESP-F2F 5.95 ± 3.93 5.17 ± 2.37 4.78 ± 2.60

Though it is notoriously difficult to quantita-
tively evaluate synthetic routes proposed in sil-
ico without expert evaluation, there are widely-
used metrics thought to correlate with successful
algorithms, such as higher solve rate (under vary-
ing computational budgets), lower average num-
ber of expansions, and lower average number of
reactions in found routes [59, 57]. We focus on
these metrics, as they are arguably most related
to a search algorithm’s efficiency. Because all
methods employ the same one-step model and
set of templates from USPTO-Full, we treat their proposals as equally chemically feasible.

Improvement on starting material-constrained synthesis planning Quantitative benchmarking
results are summarized in Table 2. Both variants of DESP outperform all baseline methods in terms
of solve rate and average number of expansions across all test sets. The solve rates of baseline
methods on USPTO-190 are noticeably lower than commonly reported ranges for general synthesis
planning [6], as the starting material constraint increases the difficulty of the task. Notably, unlike the
other benchmarked methods, the Random, BFS, MCTS, and Retro* are standard single-ended search
methods that do not make any use of the starting material constraint information.

Ablation studies To investigate the contributions of D and bidirectional search, we conduct an
ablation study by running Retro* guided by D on all benchmarks. We find that incorporating D
generally results in higher solve rates and fewer average expansions across all datasets, but still
does not outperform DESP, demonstrating the role of both D and bidirectional search in improving
planning efficiency. As an indicator of route quality, we also investigate the average number of
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Figure 4: Exemplary synthetic route for a test case that DESP-F2F was able to solve but Retro* was
unable to solve. DESP-F2F was able to match every step of the reference route in this case.

reactions in the outputs of DESP (Table 3). DESP-F2E is able to find shorter routes on average when
compared to either Retro* or Retro* guided by D. An example of a route solved by DESP-F2F (but
not by Retro*) is visualized in Fig. 4.

Performance on complex targets To investigate the degree to which DESP improves planning
performance on complex targets, we bin each target in Pistachio Hard by two commonly-used
metrics of synthetic complexity, SCScore [60] and SAScore [61]. Both variants of DESP equal or
outperform Retro* on solve rates across all complexity ranges (Fig. 3a). This indicates that, in the
starting material-constrained setting, DESP can improve planning performance on targets of higher
complexity, a regime which current CASP algorithms struggle with.

F2E and F2F comparisons Though DESP-F2F consistently expands slightly fewer nodes on
average, the empirical differences in efficiency between F2E and F2F are small. However, DESP-F2E
is able to find noticeably shorter routes on average than DESP-F2F, which finds routes even longer
than Retro* on multiple benchmarks (Table 3). A likely reason for this difference is due to the lack of
consideration of the pathway depth of existing nodes in front-to-front search, which we elaborate on
in Section A.8. We also investigate the extent to which reactions from forward expansions end up in
the solutions of each variant. As visualized in Fig. 3b, DESP-F2F incorporates more forward reactions,
while DESP-F2E solutions are dominated by top-down search almost half the time. We hypothesize
that the difficulty of bottom-up synthesis planning [42] further contributes to the increased length of
DESP-F2F solutions, as DESP-F2F empirically relies more on forward reactions and thus is likely
more sensitive to the performance of the forward models.

5 Conclusion

In this work, we introduce DESP, a novel framework for bidirectional search as applied to computer-
aided synthesis planning. DESP biases searches towards user-specified starting materials with a
combination of a learned synthetic distance network and bottom-up generation of part of the synthetic
route. This represents a task that aligns with a common use case in complex molecule synthesis
planning. We demonstrate the efficiency of DESP on the USPTO-190 dataset and two new test sets
derived from the Pistachio database. When compared to existing methods, both variants of DESP
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reduce the number of expansions required to find solutions that satisfy the specified goal, while
DESP-F2E also finds more routes with fewer reactions per route. We anticipate that with future
improvements to the synthetic distance network and bottom-up synthesis planning, bidirectional
synthesis planning can emerge as an effective and efficient solution to navigating constraints and
aligning computer-aided synthesis planning with the goals of domain experts. Additional outlook is
provided in Section A.8.

Code and Data Availablity

Relevant code with documentation can be found at https://github.com/coleygroup/desp.
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A Appendix / supplemental material

A.1 Summary of notation

Symbol Note
M set of all valid molecules
R set of all valid reactions
T set of all valid retro templates
T ′ set of all valid single-product fwd. templates
B set of building blocks, where B ⊂M
G the AND-OR graph constructed from all possible reaction tuplesR
R single-product reaction
t retro reaction template
t′ fwd. reaction template
p∗ target molecule
r∗ starting material goal
S valid synthetic route
c reaction cost function
γ(m) given m, opposing molecule to condition selection or expansion on
GR top-down search graph
GF bottom-up search graph
FR frontier molecule nodes in GR

FF frontier molecule nodes in GF

Vm (retro) estimated minimum cost of synthesizing m
Vm (fwd.) estimated value of D(m, γ(m))
rn(m|G) “reaction number," estimated cost of synthesizing m given search graph G
Vt(m|G) estimated cost of synthesizing p∗ using m given search graph G
D synthetic distance (network)
Dm estimated value of D(γ(m),m)
dn(m|G) “distance numbers," multiset of descendent Dm − Vm values for m in G
Dt(m|G) multiset of related Dm − Vm values for m in G
ft forward template predictor model
fb building block predictor model
L loss function
Dmax maximum value of D considered in L
λ # retro expansions to perform before one fwd. expansion

A.2 Retro* algorithm details

Retro* defines the following quantities:

1. Vm. For a molecule m, Vm is an unconditional estimate of the minimum cost required to
synthesize m. It is estimated by a neural network.

2. rn(m|G). For a molecule m, given search graph G, the “reaction number" rn(m|G)
represents the estimated minimum cost of synthesizing m.

3. Vt(m|G). For a molecule m, given search graph G with goal p∗, Vt(m|G) represents the
estimated minimum cost of synthesizing p∗ using m.

Retro* also cycles between selection, expansion, and update phases. We implement Retro* as follows.

Selection The molecule in the set of frontier nodes F that minimizes the expected cost of synthe-
sizing p∗ given the current search graph G is selected:

mselect = argmin
m∈F

Vt(m|G) (10)

Expansion As in Alg. 2, a one-step retrosynthesis model is called on the selected node and the
resulting reactions and precursors are added to G. Each molecule node is then initialized with
rn(m|G)← Vm.
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Update First, reaction number values are uppropagated to ancestor nodes. For reaction node R, the
reaction number is updated as the sum of its childrens’ reaction numbers.

rn(R|G)← c(R) +
∑

m∈ch(R)

rn(m|G) (11)

For molecule node m, the reaction number becomes the minimum reaction number among its
children.

rn(m|G)← min
R∈ch(m)

rn(R|G) (12)

Next, Vt(m|p∗) values are downpropagated to descendent nodes. Starting from p∗ itself,

Vt(p
∗|G)← rn(p∗|G) (13)

For subsequent reaction nodes R, the value is updated

Vt(R|G)← rn(R|G)− rn(pr(R)|G) + Vt(pr(R)|G) (14)

Finally, for molecule node m that is not p∗,

Vt(m|G)← min
R∈pr(m)

rn(R|G) (15)

A.3 Reaction pre-processing

Reactions in the USPTO-Full dataset are represented with simplified molecular-input line-entry
system (SMILES) [62] strings, where the SMILES string of reactants, reagents, and products are
separated by ‘>’ as REACTANTS>REAGENTS>PRODUCTS. Each field can have one or more chemical
species delineated with a dot (.) or be left blank in the case of reagents.

For processing reaction SMILES, multi-product reaction SMILES are first separated into single-
product reaction SMILES by creating separate entries for each product species with the same reactants
and reagents. Each single-product reaction SMILES then undergoes the following process:

1. Reagents in the SMILES string are moved to the reactant side.
2. Chemical species with identical atom mapped SMILES in both reactants and products are

moved to reagents.
3. Any products that do not contain at least one mapped atom or have fewer than 5 heavy atoms

are removed.
4. Any atom mapping numbers that exist exclusively on either the reactant side or product side

are removed.
5. Any reactants without atom mapping are moved to the reagent side.

Resulting reaction SMILES without either reactants or products are then filtered out.

A.4 Model training details
a. Enumerate full search tree across reaction network

Target

Non-buyable

Building block

Reaction

b. Extract distance and forward reaction data from subgraph

m1 

p* 

m2

R

Figure 5: Illustration of data extraction procedure for offline training of ft, fb, and D. (a) For each
target, the full search graph is enumerated by recursively tracing outgoing edges and propagating
Retro* quantities. (b) For each bimolecular reaction with at least one buyable, training examples for
ft and fb ares labeled. For each molecule node m other than the target, D(m, p∗) is computed.
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Dataset construction To learn ft and fb, a full enumeration of all pathways (until reaching nodes
in B) rooted at p∗ is performed for each molecule node p∗ in GFWD. For learning ft, each reaction
node Ri = (ri, pi, ti) is then used as a training example for each reactant mj ∈ ri with input
zn1
m (mj) ⊕ zn1

m (p∗) and one-hot encoded label ti. Likewise, for learning fb, each reaction node
Ri = ({m1,m2}, pi, ti) that is bimolecular and involves at least one building block yields a training
example with input zn1

m (m1) ⊕ zn1
m (p∗) ⊕ zn1

t (ti) and output zn2
m (m2) if m2 ∈ B and with input

zn1
m (m2)⊕zn1

m (p∗)⊕zn1
t (ti) and output zn2

m (m1) if m1 ∈ B. The procedure for such training example
generation is illustrated in Fig. 5. With n1 = 2048, n2 = 256, we use the RDKit implementation of
the Morgan Fingerprint [63] with radius 2 for zm and the Atom Pair fingerprint [64] for zt.

Because D is used to bias both the top-down and bottom-up searches, we perform the same pathway
enumeration for all molecule nodes p∗ /∈ B, p∗ ∈ GUSPTO. In this case, however, we only consider p∗
for which we find valid synthetic routes. Training examples are then extracted for all other molecule
nodes mi in a solved search graph, with input znm(mi)⊕znm(p∗) and label Vp∗(mi|GR)−rn(mi|GR),
with n = 512. For calculating this label, we propagate the Retro* functions as described in Section
A.2 such that D can be calculated as the minimum cost of synthesizing p∗ subtracted by the minimum
cost of synthesizing mi. Here, we set c(Ri) = 1 for all Ri, as a synthetic route’s number of steps is
an important metric in evaluating the route cost, and it is otherwise difficult to objectively quantify
the cost of a reaction. This training example generation is also depicted in Fig. 5. Finally, to obtain
additional training examples, we also recover pairs of (m, p∗) where p∗ was not “solved" by the
enumerative search but would have been solved if m ∈ B.

For validation of the ft and fb models, we construct the graph Gval corresponding to all reactions
across both the training and validation splits. We perform the same pathway enumeration described
above, and each “training example" that corresponds to a reaction not in the original training split
is used as a validation example. For validation of the D model, we construct Gval fromRUSPTO and
perform the pathway enumeration only on p∗ /∈ GUSPTO to obtain validation examples.

Figure 6: Predicted vs. actual values of synthetic distance on the validation examples. Actual values
above 9 are set to 10.

Model hyperparameters All models are MLPs trained with the Adam optimizer, early stopping
(patience 2), and decayed learning rate on plateau with factor 0.3 and patience 1 on a single NVIDIA
RTX 4090. The following table summarizes the hyperparameters and details of each model used in
experiments.

Model Batch Size Dropout Activation # Hidden Layers Hidden Units Learning Rate Input Dim. Output Dim.
Retro Template 2048 0.5 Sigmoid 2 2048 0.002758 2048 270794
Fwd Template 4096 0.4 SiLU 2 1024 0.005113 4096 196339
BB Model 4096 0.3 ReLU 3 2048 0.001551 6144 256
Retro* Vm 4096 0.2 SiLU 4 128 0.0025 2048 1
Synthetic Dist. D 4096 0.3 Sigmoid 4 256 0.00489 1024 1
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Hyperparameters were selected based on best performance on the validation split while performing a
Bayesian search through the following parameter space:

1. Dropout: [0.1, 0.2, 0.3, 0.4, 0.5]

2. Activation: [ReLU, SiLU, Sigmoid, Tanh]

3. Hidden layers: [2, 3, 4]

4. Hidden units: [1024, 2048] for retro, forward, and BB. [128, 256] for D and Vm

5. Learning rate: [0.00001 - 0.01]

The template relevance module from the open-source ASKCOS codebase was used to train the
one-step retro model.1

A.5 DESP additional details

Algorithm 2: RETRO_EXPAND(m, GR, N )
m: expanded molecule node, GR: top search graph, N : num. templates to propose
t← TOP_N(σ(MLPR(zm(m))))) ; /* Get top N templates from retro model */
for i← 1 to N do

r ← t[i](m) ; /* Apply retro template to m */
GR.ADD_RXN(r,m, t[i]); /* Add reaction and precursors to GR */

end

Design of new quantities and update rules We recall that the minimum total cost of synthesizing
the target p∗ from a molecule m under the Retro* framework is estimated as:

Vt(m|GR) =
∑

r∈Ar(m|GR)

c(r) +
∑

m′∈Vm(GR),pr(m′)∈Ar(m|GR)

rn(m′|GR) (16)

where A(m|GR) represents the set of reaction node ancestors of m and Vm(GR) represents the set
of molecule nodes in the search graph. This is equivalent to

Vt(m|GR) = g(m|GR) +
∑

m′∈N (m|GR)

Vm′ (17)

where g(m|GR) aggregates the current cost from all reaction nodes in GR contributing to Vt(m|GR),
and N (m|GR) ⊆ FR accordingly represents the set of frontier top nodes for the subgraph of GR

corresponding to nodes contributing to Vt(m|GR). If we add the constraint that one frontier node
must implicitly be the ancestor of r∗, the estimate of the minimal cost then becomes:

V ′
t (m|GR) = g(m|GR) + min

mj∈N (m|GR)

 ∑
mi∈N (m|GR),mi!=mj

Vmi +D(r∗,mj)

 (18)

= g(m|GR) +
∑

mi∈N (m|GR)

Vmi
+ min

mj∈N (m|GR)

(
D(r∗,mj)− Vmj

)
(19)

= Vt(m|GR) + min
mj∈N (m|GR)

Dmj
(20)

Our update rules are implemented such that Dt(m|GR) = minmj∈N (m|GR) Dmj
, thus justifying

our design of the selection and update procedures. Note that this design relies on the assumption
that N (m|GR) remains static upon adding the goal node constraint, when in reality the introduction
of D may change the optimal set of frontier nodes to consider in the search graph. To avoid the
combinatorial complexity of this situation and retain the efficiency from dynamic programming for
our update policy, we maintain this assumption and find that introducing D in this way empirically
works well (Section 4.2).

1Template relevance module can be found at https://gitlab.com/mlpds_mit/askcosv2/retro/
template_relevance.
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Algorithm 3: DESP(p∗, r∗, N1, N2, K, L, λ, s)
p∗: target, r∗: starting material goal, N1: num. retro templates to propose, N2: num. forward
templates to propose, K: num. building blocks to search, L: max num. expansions, λ: num.
times to expand top before expanding bottom, s: strategy (F2E or F2F)
GR ← {p∗} ; /* Initialize search graphs */
GF ← {r∗};
l← 0;
while not solved OR l ≤ L do

for i← 1 to λ do
m← argminm∈FR

[Vt(m|GR) + min(Dt(m|GR))] ; /* Select best top */
RETRO_EXPAND(m,GR, N1) ; /* Expand with Alg.2 */
TOP_UPDATE(GR); /* Update GR with Section 3 rules */
if met bottom then

mmet.rn← 0 ; /* Set expected cost of met node to 0 */
BOT_UPDATE(GF ); /* Retro* updates on GF */

end
l← l + 1;

end
m← argminm∈FF

Vt(m|GF ) ; /* Select best bot */
if s = F2E then

FORWARD_EXPAND(m, p∗, GF , N2,K); /* Expand conditioned on p∗ */
BOT_UPDATE(GF , s); /* Retro* updates GF */

else if s = F2F then
q ← argminq∈GR

D(m, q); /* Find closest node */
FORWARD_EXPAND(m, q,GF , N2,K); /* Expand conditioned on q */
BOT_UPDATE(GF , s); /* Retro* updates on GF */

if met top then
mmet.rn← 0,mmet.dn← [0] ; /* Set expected costs of met node to 0 */
TOP_UPDATE(GF ); /* Section 3 updates on GR */

end
l← l + 1;

end

A.6 New benchmark set details

We follow the test set extraction procedure of Chen et al. [6], applied within patents of the Pistachio
dataset [14] (version: 2023Q4) to obtain 1,004,092 valid synthetic routes. We randomly sample
synthetic routes from this set until we obtained 150 routes that satisfied the following constraints:
(1) No reactions in the route are found in the training data. (2) No reactions are shared between
any routes within the test set. (3) All reactions are found in the top 50 proposals of our single-step
retrosynthesis model. (4) No two targets in the test set have a Tanimoto similarity of more than 0.7.
(5) We enforce a minimum number of routes for different route lengths (Fig. 7, Fig. 8). We term
this set of 150 routes Pistachio Reachable. We perform the same procedure but modify condition
(2) to require only 50% or more of the reactions to be reproducible (in-distribution) and obtain 100
routes which we term Pistachio Hard. Due to a bug in our implementation of criterion (2), a small
number of routes share the same reaction in the final datasets, but the degree of inter-route reaction
duplication is still significantly less than that of USPTO-190 for both benchmark sets (Table 1).

A.7 Additional experimental details

Implementation details For random search, all node selections were performed at random among
frontier molecule nodes. For BFS, the molecule with the lowest depth was selected at each step,
with precedence for nodes whose parent reactions had the highest plausibility scores from the retro
one-step model. MCTS was run by integrating our one-step model into the open-source ASKCOS
code base [65]. For Retro*, we removed the synthetic distance network and bottom-up expansions
from our DESP implementation. Notably, reaction costs for Retro* and DESP are both calculated
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Figure 7: Distribution of reaction counts in Pistachio Reachable.

Figure 8: Distribution of reaction counts in Pistachio Hard.

as − log p, where p is the template plausibility from the one-step model (retro or forward). For
GRASP, we used the authors’ search implementation [13]. For a fair comparison with the AND-OR
graph structure, we did not increment the iteration counter when a molecule that had previously been
expanded was expanded again. In training the GRASP value network, we use the authors’ reported
hyperparameters where applicable and the default values in their code base otherwise.

Approximate nearest neighbors search In selecting building blocks for the forward expansion
with k-NN search, the Python library Faiss is used. A 256-dimension Morgan fingerprint of
each building block is stored in a vector database and compressed using product quantization for
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approximate nearest neighbor search at dramatically faster speeds and significantly lower memory
overhead.

Compute All experiments were performed on a 32-core AMD Threadripper Pro 5975WX processor
and with a single NVIDIA RTX 4090 GPU. Running experiments on all benchmark sets for a given
method took around 10 hours. DESP requires ∼ 3 GB of GPU memory to store the building block
database for fast k-NN.

A.8 Limitations and Outlook

Convergent syntheses Convergent synthetic routes, in which multiple non-BBs are combined, are
often desirable in chemistry due to their relative efficiency. The top-down search has no problems
proposing convergent routes. However, the bottom-up searcher in DESP only performs forward
expansions and thus cannot handle convergent routes by adding and merging new synthetic trees.
Resultantly, the bottom-up search can only plan one branch if the final route requires convergent steps.
Implementing additional modules of SynNet [42] into the bottom-up search would enable planning
of convergent synthetic routes and potentially further reduce the average number of reactions in
solutions and improve solve rates.

GPU reliance and computational overhead DESP requires GPU acceleration to tractably perform
a k-NN search over ∼ 23 million building blocks in the forward expansion policy. DESP-F2F also
requires GPU inference to rapidly perform node comparisons at each iteration. In all, forward
expansions take around 50% more time than retro expansions, though this is in part because our
implementation of forward synthesis applies retro templates to each product proposed by the forward
model to ensure template reversibility (i.e., to confirm that the increased success in finding routes
during the bidirectional search is not an artifact of having access to “different” transformations), which
creates additional overhead. Overall, we view these limitations primarily as engineering problems
that do not take away from the empirical benefits demonstrated in the paper. In principle, one could
also implement DESP-F2E as a parallel bidirectional search in pursuit of additional efficiency gains.

Building block specification Though DESP is designed to address starting material-constrained
synthesis planning, we envision that future work could optimize bidirectional search to improve
general retrosynthesis capabilities by conditioning on one or more starting materials instead of
constraining the solution space. These starting materials could be expert-designed or predicted
algorithmically as in Gao et al. [42].

DESP-F2F implementation Our implementation of DESP-F2F does not take into account the total
known cost of the opposing graph’s nodes Vt(m

′|GF )− rn(m′|GF ) when calculating dn(m|GR),
and likewise the value of rn(m|GF ) does not take into account Vt(m

′|GR) − rn(m′|GR). As a
result, the selection policy DESP-F2F selects nodes that minimize the lowest expected cost of reaching
the opposing search graph, but does not select to minimize the lowest expected cost of the final
route directly. This is likely a primary contributor to DESP-F2F finding longer routes on average
than DESP-F2E. As the values of Vt(m|G) change after each expansion, it would be computationally
expensive to re-compare nodes across the search graphs at each iteration. We have not devised an
efficient means of handling the number of re-comparisons that would be required and leave such
optimizations to future exploration.
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