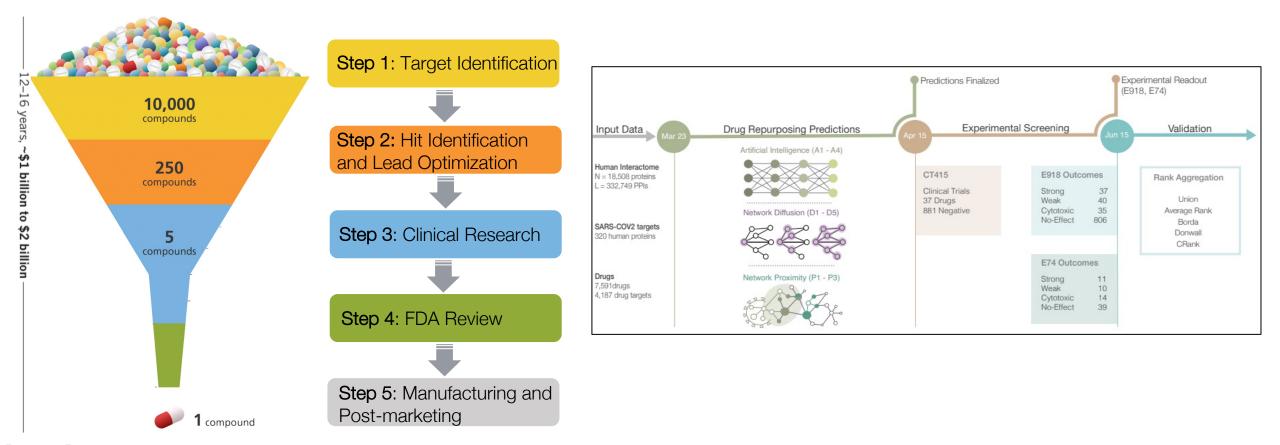

Artificial Intelligence Foundation for Therapeutic Science

Kexin Huang*, Tianfan Fu*, <u>Wenhao Gao*,</u> Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W. Coley, Cao Xiao, Jimeng Sun, Marinka Zitnik ACS Fall 2022, Division of Computers in Chemistry

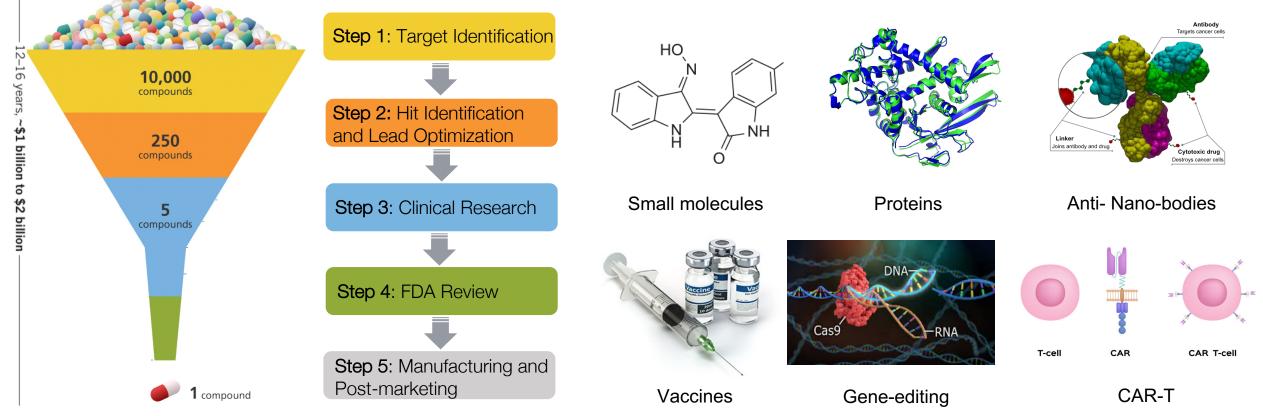
8/22/2022

Huang, K., Fu, T., Gao, W., ... & Zitnik, M. (2022). Artificial intelligence foundation for therapeutic science. Nature chemical biology (accepted)

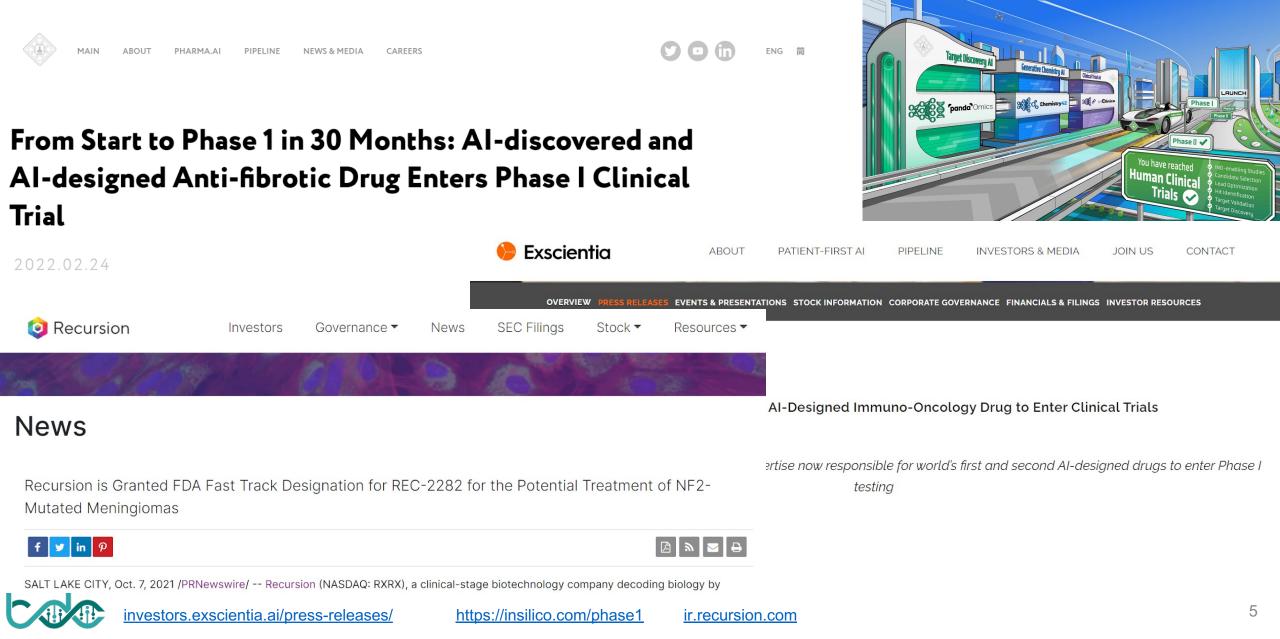

Challenges in Drug Discovery & Development High cost, long time

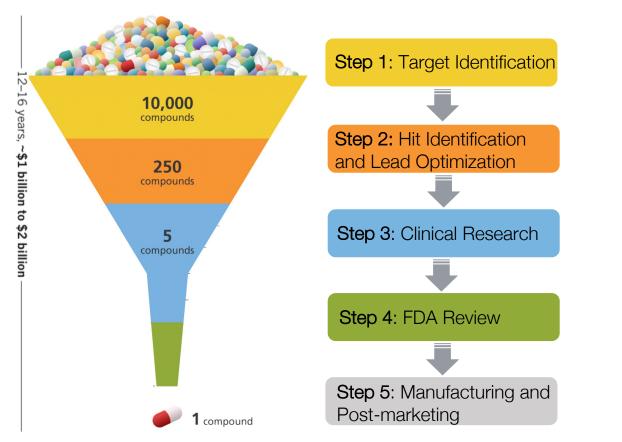
Challenges in Drug Discovery & Development High cost, long time

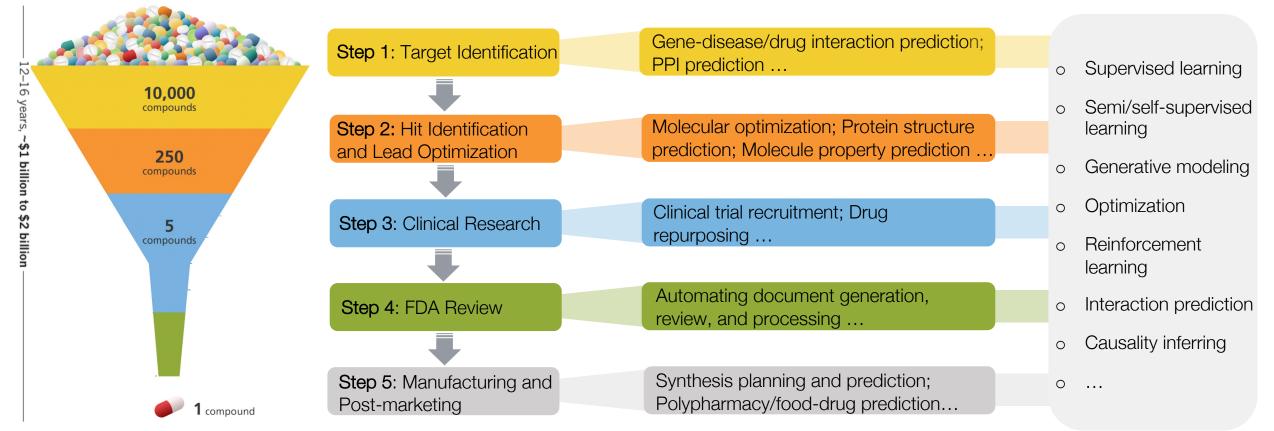
Various and emerging diseases

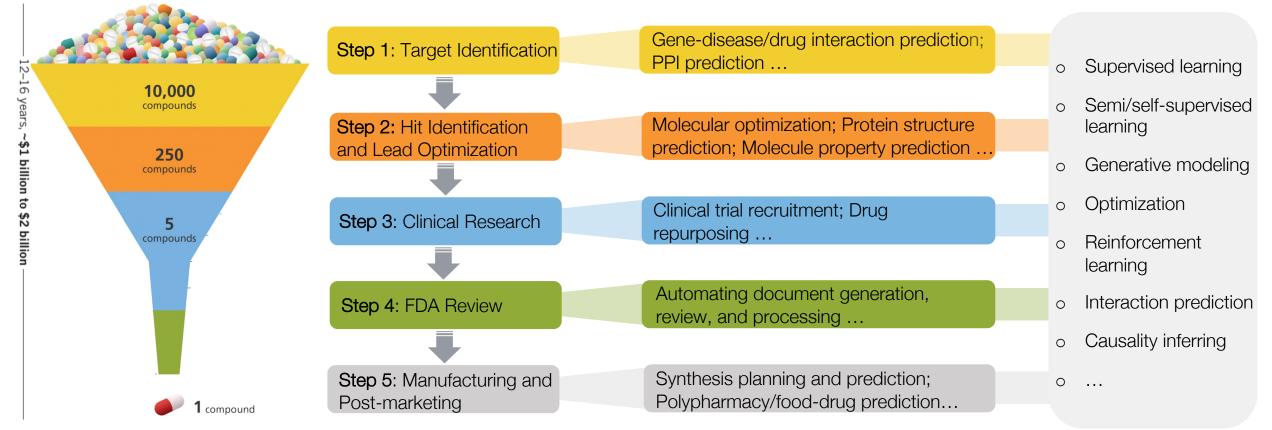


Challenges in Drug Discovery & Development High cost, long time

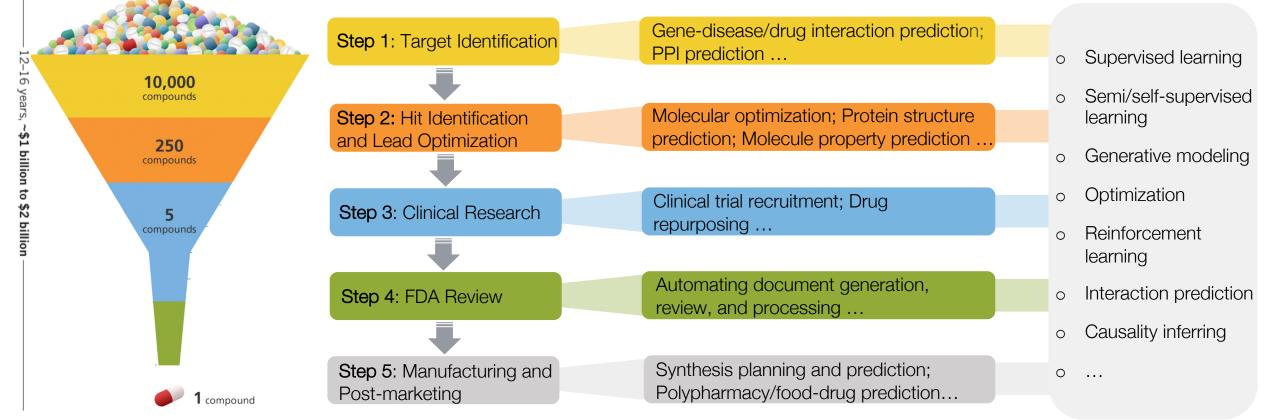

Various and emerging diseases


Abundant molecular modality


Data-driven Methods Demonstrated a Clear Impact



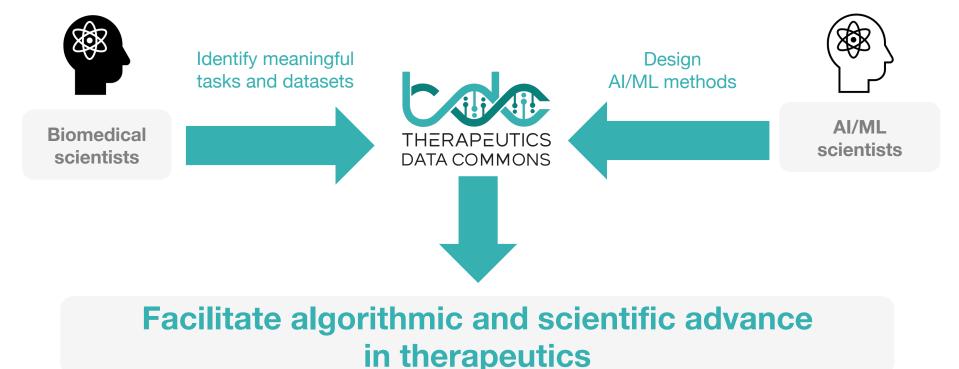
• Formulate various tasks as machine-learning-solvable tasks.



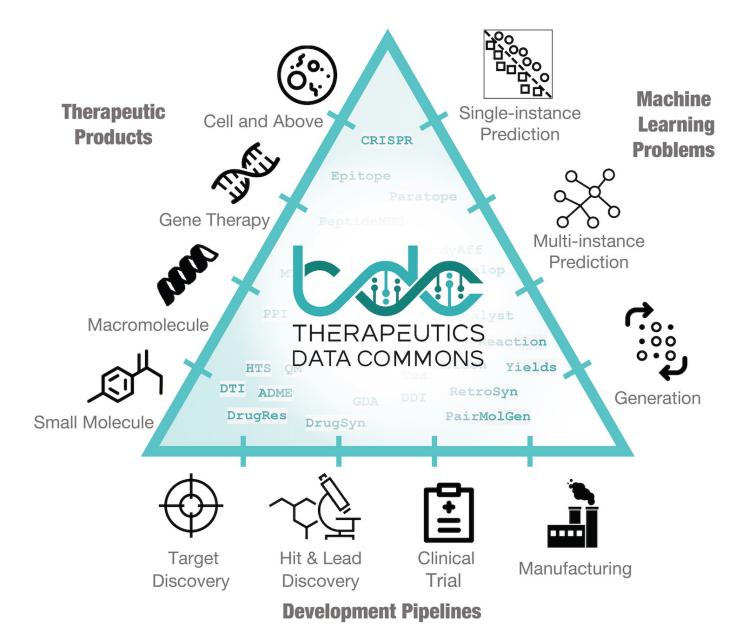
- Formulate various tasks as machine-learning-solvable tasks.
- Identify, retrieve, and process datasets of many different types scattered around.

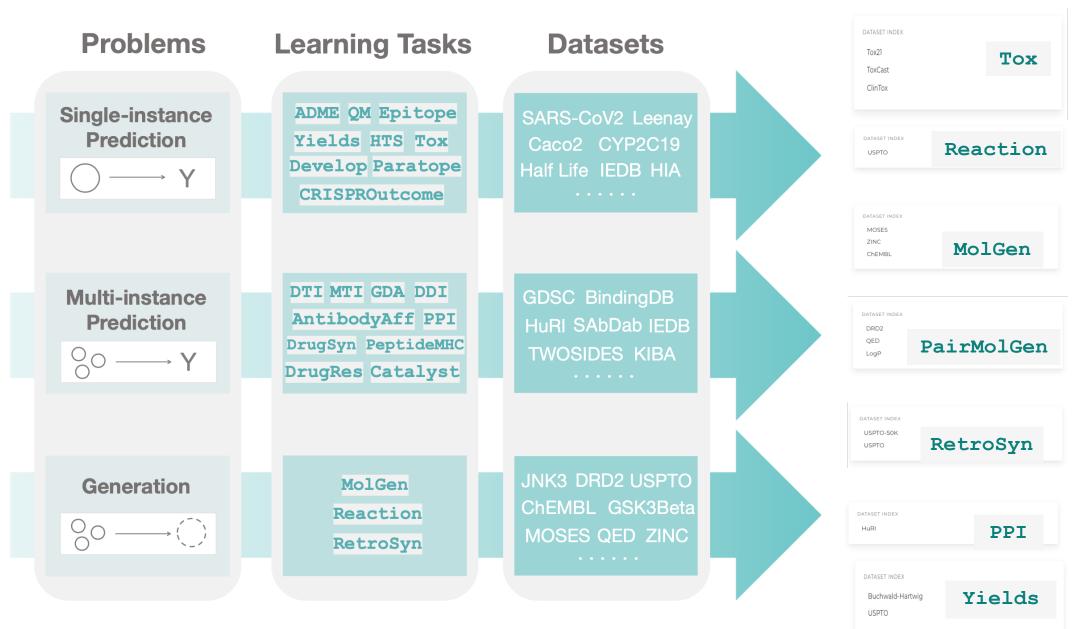
- Formulate various tasks as machine-learning-solvable tasks.
- Identify, retrieve, and process datasets of many different types scattered around.
- Assess algorithmic advances to align with real-world and clinical deployment.

- Formulate various tasks as machine-learning-solvable tasks.
- Identify, retrieve, and process datasets of many different types scattered around.
- Assess algorithmic advances to align with real-world and clinical deployment.



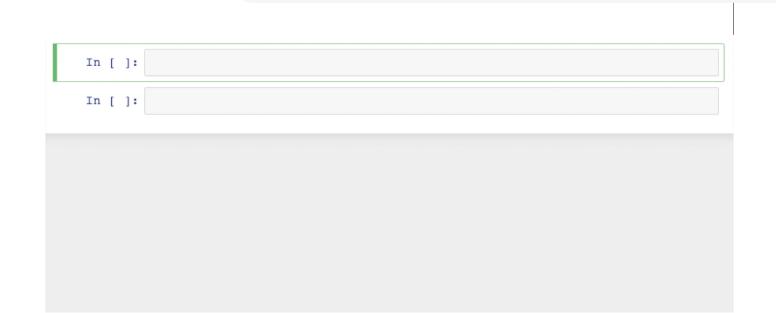
Therapeutics Data Commons


Website: https://tdcommons.ai (or QR code) Paper: https://arxiv.org/abs/2102.09548 Github: https://github.com/mims-harvard/TDC



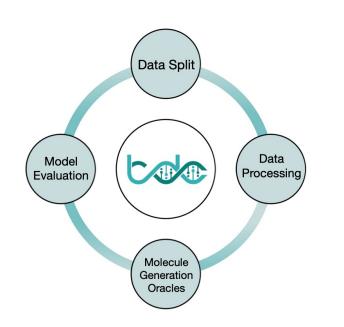
Wide Range of Therapeutic Modalities and Pipeline

Three-Tier Design


Unified, Light-weighted and User-friendly

pip install PyTDC

3 Lines of Code


The core TDC library uses minimum packages thus is installed hassle-free. Data loaders are simplified so that you can get access to ML-ready datasets within only 3 lines of code.

TDC has more than Datasets

 Ecosystem of tools, leaderboards, and community resources, including data functions, strategies for systematic model evaluation, meaningful data splits, data processors, and molecule generation oracles

Model performance evaluators

FUNCTION INDEX

Regression Metric

Mean Squared Error (MSE)

Mean Absolute Error (MAE)

Coefficient of Determination (R²)

Binary Classification Metric

Area Under the Receiver Operating Characteristic Curve (ROC-AUC)

Area Under the Precision-Recall Curve (PR-AUC)

Accuracy Metric

Precision

Recall

F1 Score

Multi-class Classification Metric

Micro-F1, Micro-Precision, Micro-Recall, Accuracy

Macro-F1

Cohen's Kappa (Kappa)

Token-level Classification Metric

Average ROC-AUC

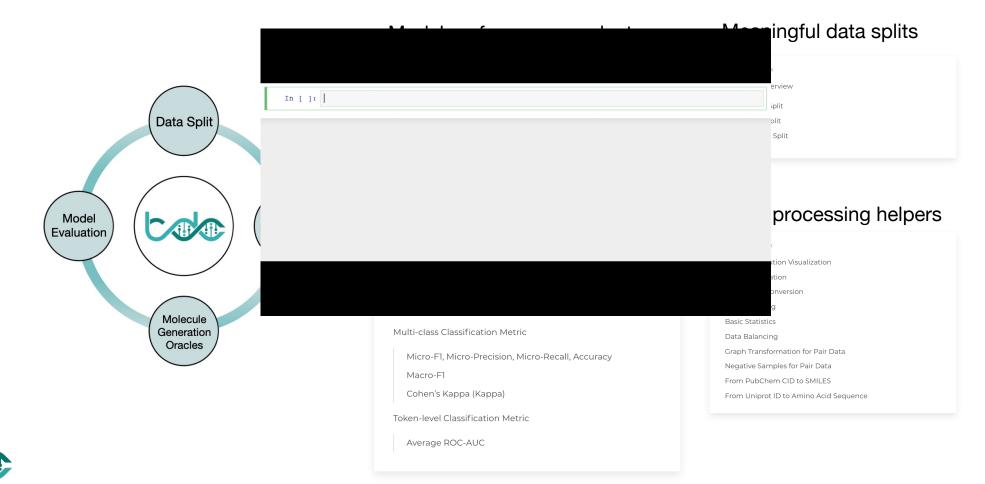
Meaningful data splits

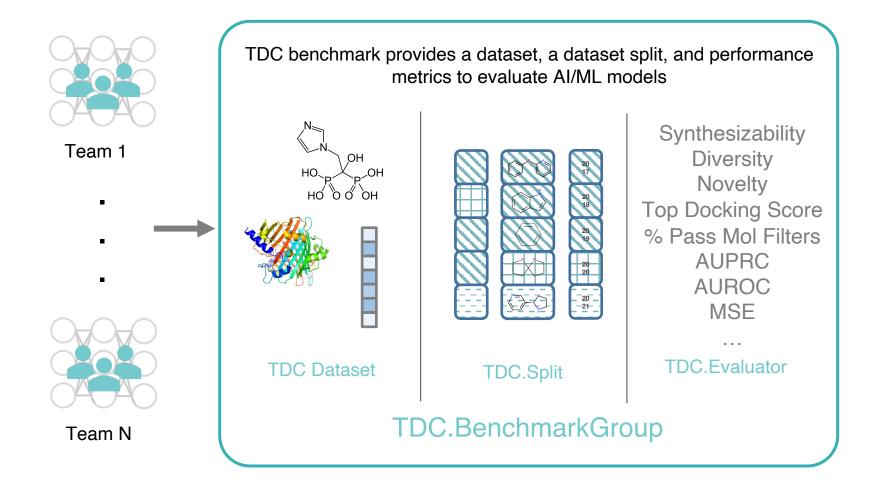
FUNCTION INDEX

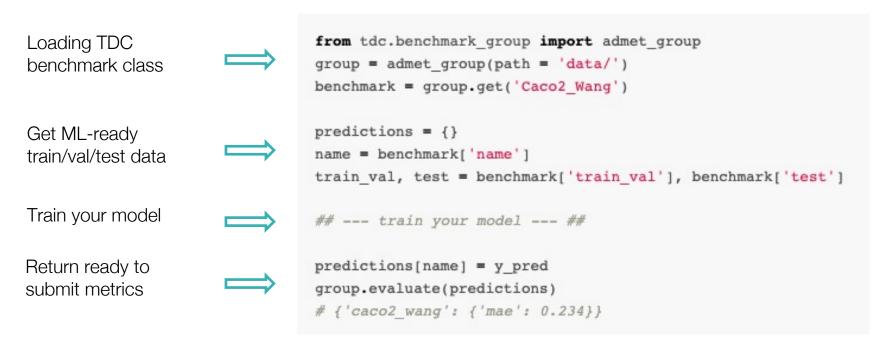
Random Split

Scaffold Split

Cold-Start Split


Data processing helpers


FUNCTION INDEX Label Distribution Visualization Label Binarization Label Units Conversion Label Meaning Basic Statistics Data Balancing Graph Transformation for Pair Data Negative Samples for Pair Data From PubChem CID to SMILES From Uniprot ID to Amino Acid Sequence


TDC has more than Datasets

 Ecosystem of tools, leaderboards, and community resources, including data functions, strategies for systematic model evaluation, meaningful data splits, data processors, and molecule generation oracles

← → C â tdcommons.ai/benchmark/dd	cking group/drd3/		Q 🖈 🕝 🖪 🕲 🕈 🖄 🕷 (En
		✓ Data Functions ✓ Leaderboards ✓ New	
TDC.DRD3 Lea	darbaard		
TDC.DRD3 Lea	laerboard		
Docking Target Su	mmary		
Dataset	Diseases	Link to DRD3 target protein	

Loading TDC benchmark class

Get ML-ready train/val/test data

Train your model

Return ready to submit metrics


```
predictions = {}
name = benchmark['name']
train_val, test = benchmark['train_val'], b
```

--- train your model ---

predictions[name] = y_pred
group.evaluate(predictions)
{'caco2 wang': {'mae': 0.234}}

Leaderboard: Models Make at Most 5000 Oracle Calls

Rank	Model	Contact	Link	#Params	Top100	Top10↓	Topl	Diver.1	Novel.1	%Pass1	Top 1-₽↓	MI↓	Molecules
	Best-in- data	1.5		-	-12.080	-12.590	-12.800	0.864	-	0.780	-11.700	5.100	Link
1	Graph-GA	Tianfan Fu	GitHub, Paper	0	-14.811 ± 0.413	-15.930 ± 0.336	-16.533 ± 0.309	0.626 ± 0.092	1.000 ± 0.000	0.393 ± 0.308	-14.267 ± 0.450	9.669 ± 0.468	Link
2	SMILES- LSTM	Tianfan Fu	GitHub, Paper	3,149,000	-13.017 ± 0.385	-14.030 ± 0.421	-14.533 ± 0.525	0.740 ± 0.056	1.000 ± 0.000	0.257 ± 0.103	-12.533 ± 0.403	5.826 ± 1.908	Link
3	GCPN	Tianfan Fu	GitHub, Paper	17,600	-10.045 ± 0.226	-11.483 ± 0.581	-12.300 ± 0.993	0.922 ± 0.002	1.000 ± 0.000	0.167 ± 0.045	-9.367 ± 0.170	10.000 ± 0.000	Link
4	MARS	Tianfan Fu	GitHub, Paper	153,000	-9.509 ± 0.035	-10.693 ± 0.172	-11.433 ± 0.450	0.873 ± 0.002	1.000 ± 0.000	0.527 ± 0.087	-9.000 ± 0.082	7.073 ± 0.798	Link
5	MolDQN	Tianfan Fu	GitHub, Paper	2,694,800	-8.236 ± 0.089	-9.348 ± 0.188	-9.990 ± 0.194	0.893 ± 0.005	1.000 ± 0.000	0.023 ± 0.012	-7.980 ± 0.112	10.000 ± 0.000	Link

↓↑ The lower/higher, the better. Click ↓↑ to sort based on the specific column.

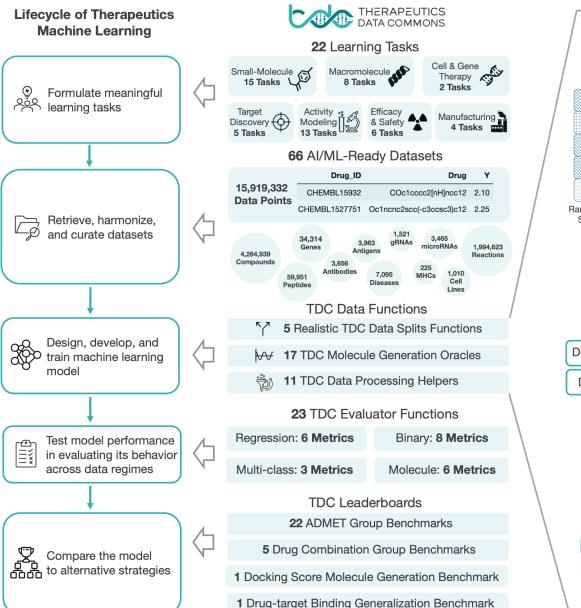
* Rank is based on Top 100 average docking scores

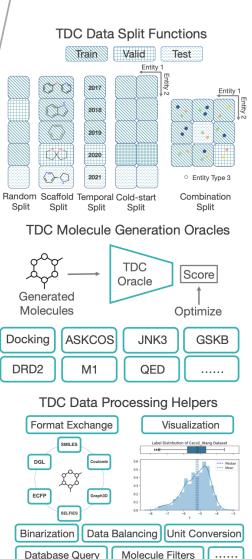
** Novelty is calculated against the ZINC training dataset.

Leaderboard: Models Make at Most 1000 Oracle Calls

Rank	Model	Contact	Link	#Params	Top1004	Top104	Top1↓	Diver.1	Novel.1	%Passt	Top 1-P↓	мц	Molecules
	Best-in- data	-	-	-	-12.080	-12.590	-12.800	0.864	-	0.780	-11.700	5.100	Link
1	Graph-GA	Tianfan Fu	GitHub, Paper	0	-11.224 ± 0.484	-12.400 ± 0.782	-13.233 ± 0.713	0.815 ± 0.046	1.000 ± 0.000	0.777 ± 0.096	-10.600 ± 0.374	7.695 ± 0.909	Link
2	SMILES- LSTM	Tianfan Fu	GitHub, Paper	3,149,000	-9.971 ± 0.115	-11.163 ± 0.141	-11.967 ± 0.205	0.871 ± 0.004	1.000 ± 0.000	0.777 ± 0.026	-9.367 ± 0.094	4.818 ± 0.541	Link
3	GCPN											00 ±	Link

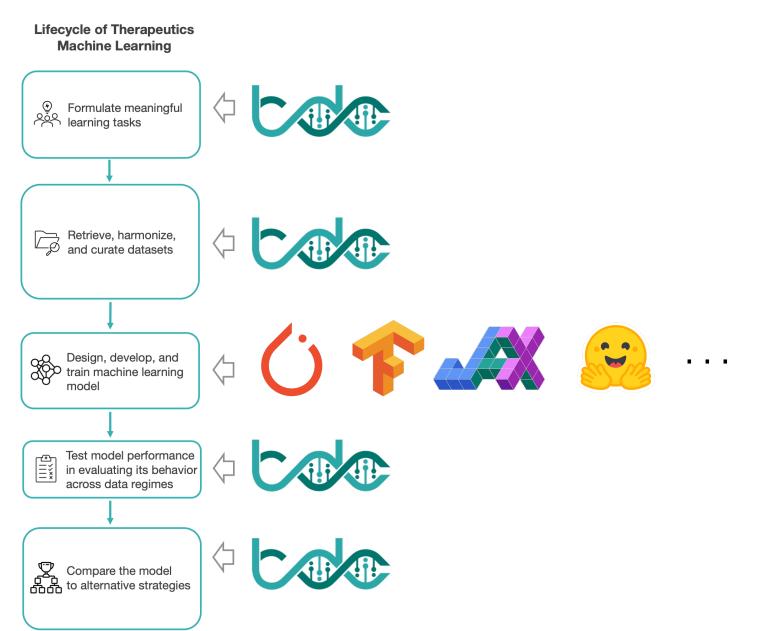
https://tdcommons.ai/ benchmark/overview/

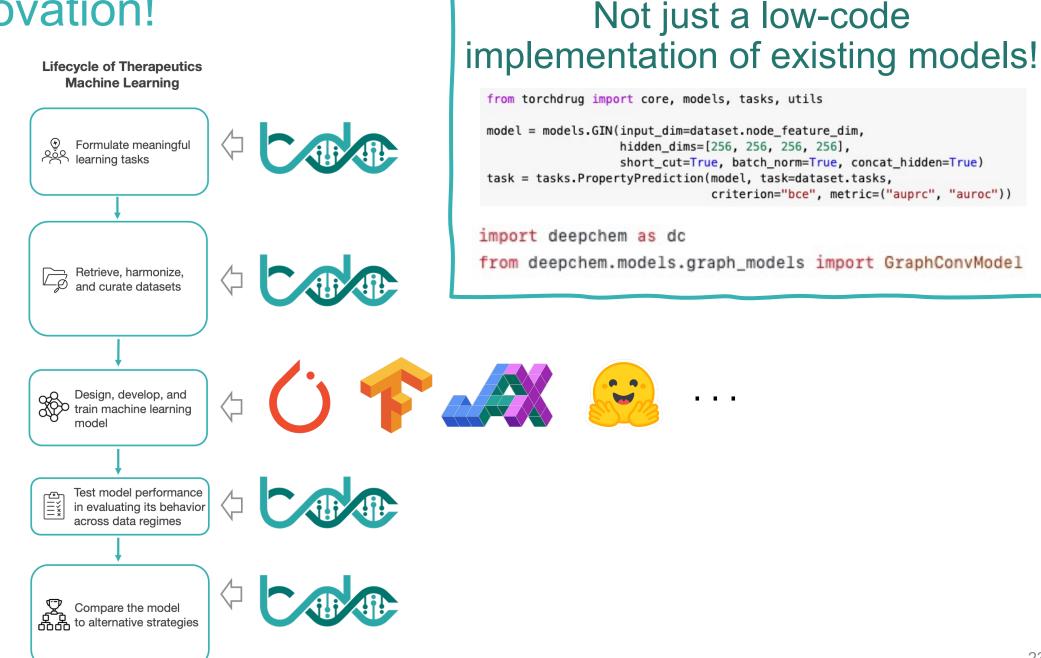



- Scaffold split
- No single method has the best performance across the board!

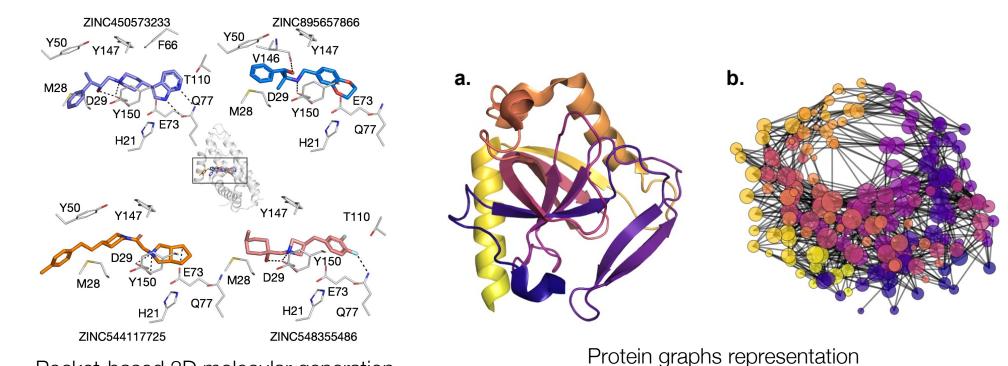
Raw Feature T	уре	Expert-Cur	ated Methods	SMILES	Molecular Graph-Based Methods (state-of-the-Art in ML)						
Dataset	Metric	Morgan [31]	RDKit2D [24]	CNN [18]	NeuralFP [7]	GCN [23]	AttentiveFP [43]	AttrMasking [16]	ContextPred [16]		
Dutuset	# Params.	1477K	633K	227K	480K	192K	301K	2067K	2067K		
TDC.Caco2 (↓) TDC.HIA (↑) TDC.Pgp (↑) TDC.Bioav (↑)	MAE AUROC AUROC AUROC	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.393±0.024 0.972±0.008 0.918±0.007 0.672±0.021	$\begin{array}{c} 0.446 \pm 0.036 \\ 0.869 \pm 0.026 \\ 0.908 \pm 0.012 \\ 0.613 \pm 0.013 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.599 {\pm} 0.104 \\ 0.936 {\pm} 0.024 \\ 0.895 {\pm} 0.021 \\ 0.566 {\pm} 0.115 \end{array}$	$\frac{0.401 \pm 0.032}{0.974 \pm 0.007}$ $\frac{0.892 \pm 0.012}{0.632 \pm 0.039}$	$\begin{array}{c} 0.546 {\pm} 0.052 \\ \hline 0.978 {\pm} 0.006 \\ \hline 0.929 {\pm} 0.006 \\ \hline 0.577 {\pm} 0.087 \end{array}$	$\begin{array}{r} 0.502{\pm}0.036\\ 0.975{\pm}0.004\\ \hline 0.923{\pm}0.005\\ \hline 0.671{\pm}0.026\end{array}$		
TDC.Lipo (↓) TDC.AqSol (↓)	MAE MAE	$\begin{array}{c} 0.701 {\pm} 0.009 \\ 1.203 {\pm} 0.019 \end{array}$	$\frac{0.574 \pm 0.017}{0.827 \pm 0.047}$	$0.743{\scriptstyle \pm 0.020}\\1.023{\scriptstyle \pm 0.023}$	$\begin{array}{c} 0.563 {\pm} 0.023 \\ 0.947 {\pm} 0.016 \end{array}$	$\frac{0.541{\pm}0.011}{0.907{\pm}0.020}$	0.572±0.007	$0.547{\scriptstyle\pm 0.024}\\1.026{\scriptstyle\pm 0.020}$	0.535±0.012 1.040±0.045		
TDC.BBB (↑) TDC.PPBR (↓) TDC.VD (↑)	AUROC MAE Spearman	$ \begin{vmatrix} 0.823 \pm 0.015 \\ 12.848 \pm 0.362 \\ 0.493 \pm 0.011 \end{vmatrix} $	$\begin{array}{c} 0.889 {\scriptstyle \pm 0.016} \\ 9.994 {\scriptstyle \pm 0.319} \\ \hline \textbf{0.561 {\scriptstyle \pm 0.025}} \end{array}$	$\begin{array}{c} 0.781 {\pm} 0.030 \\ 11.106 {\pm} 0.358 \\ 0.226 {\pm} 0.114 \end{array}$	$\begin{array}{c c} 0.836 \pm 0.009 \\ \hline \textbf{9.292} \pm \textbf{0.384} \\ 0.258 \pm 0.162 \end{array}$	$\begin{array}{c} 0.842 {\pm} 0.016 \\ 10.194 {\pm} 0.373 \\ 0.457 {\pm} 0.050 \end{array}$	$\frac{0.855 \pm 0.011}{9.373 \pm 0.335} \\ \overline{0.241 \pm 0.145}$	$\frac{0.892 \pm 0.012}{10.075 \pm 0.202} \\ 0.559 \pm 0.019$	$\begin{array}{c} \textbf{0.897} {\scriptstyle \pm 0.004} \\ 9.445 {\scriptstyle \pm 0.224} \\ 0.485 {\scriptstyle \pm 0.092} \end{array}$		
TDC.CYP2D6-I (†) TDC.CYP3A4-I (†) TDC.CYP2C9-I (†) TDC.CYP2D6-S (†) TDC.CYP3A4-S (†) TDC.CYP2C9-S (†)	AUPRC AUPRC AUPRC AUPRC AUROC AUROC	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.616 {\pm} 0.007 \\ 0.829 {\pm} 0.007 \\ 0.742 {\pm} 0.006 \\ 0.677 {\pm} 0.047 \\ \underline{0.639 {\pm} 0.012} \\ 0.360 {\pm} 0.040 \end{array}$	$\begin{array}{c} 0.544{\pm}0.053\\ 0.821{\pm}0.003\\ 0.713{\pm}0.006\\ 0.485{\pm}0.037\\ \hline \textbf{0.662{\pm}0.031}\\ 0.367{\pm}0.059\end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.616 {\pm} 0.020 \\ 0.840 {\pm} 0.010 \\ 0.735 {\pm} 0.004 \\ 0.617 {\pm} 0.039 \\ 0.590 {\pm} 0.023 \\ 0.344 {\pm} 0.051 \end{array}$	$\begin{array}{c} 0.646 {\pm} 0.014 \\ 0.851 {\pm} 0.006 \\ 0.749 {\pm} 0.004 \\ 0.574 {\pm} 0.030 \\ 0.576 {\pm} 0.025 \\ 0.375 {\pm} 0.032 \end{array}$	$\begin{array}{c} 0.721 \pm 0.009 \\ \hline 0.902 \pm 0.002 \\ \hline 0.829 \pm 0.003 \\ \hline 0.704 \pm 0.028 \\ \hline 0.582 \pm 0.021 \\ \hline 0.381 \pm 0.045 \end{array}$	$\begin{array}{c} \textbf{0.739}{\pm}0.005\\ \textbf{0.904}{\pm}0.002\\ \textbf{0.839}{\pm}0.003\\ \textbf{0.736}{\pm}0.024\\ \textbf{0.609}{\pm}0.025\\ \textbf{0.392}{\pm}0.026\\ \end{array}$		
TDC.Half_Life (↑) TDC.CL-Micro (↑) TDC.CL-Hepa (↑)	Spearman Spearman Spearman	0.329±0.083 0.492±0.020 0.272±0.068	$\begin{array}{c} 0.184 {\pm 0.111} \\ \hline \textbf{0.586 {\pm 0.014}} \\ 0.382 {\pm 0.007} \end{array}$	$\begin{array}{c} 0.038 {\pm} 0.138 \\ 0.252 {\pm} 0.116 \\ 0.235 {\pm} 0.021 \end{array}$	$\begin{array}{c c} 0.177 \pm 0.165 \\ 0.529 \pm 0.015 \\ 0.401 \pm 0.037 \end{array}$	$\frac{0.239 \pm 0.100}{0.532 \pm 0.033} \\ 0.366 \pm 0.063$	$\begin{array}{c} 0.085 {\pm} 0.068 \\ 0.365 {\pm} 0.055 \\ 0.289 {\pm} 0.022 \end{array}$	$\frac{0.151 {\pm} 0.068}{0.585 {\pm} 0.034}}{0.413 {\pm} 0.028}$	$\begin{array}{c} 0.129 {\pm} 0.114 \\ 0.578 {\pm} 0.007 \\ \hline \textbf{0.439} {\pm} \textbf{0.026} \end{array}$		
TDC.hERG (↑) TDC.AMES (↑) TDC.DILI (↑) TDC.LD50 (↓)	AUROC AUROC AUROC MAE	$ \begin{vmatrix} 0.736 \pm 0.023 \\ 0.794 \pm 0.008 \\ 0.832 \pm 0.021 \\ 0.649 \pm 0.019 \end{vmatrix} $	$\begin{array}{c} \textbf{0.841}{\pm 0.020} \\ 0.823 {\pm 0.011} \\ 0.875 {\pm 0.019} \\ \underline{0.678 {\pm 0.003}} \end{array}$	$\begin{array}{c} 0.754 {\pm} 0.037 \\ 0.776 {\pm} 0.015 \\ 0.792 {\pm} 0.016 \\ 0.675 {\pm} 0.011 \end{array}$	$\begin{array}{c} 0.722{\scriptstyle\pm0.034}\\ 0.823{\scriptstyle\pm0.006}\\ 0.851{\scriptstyle\pm0.026}\\ 0.667{\scriptstyle\pm0.020}\end{array}$	$\begin{array}{c} 0.738 \pm 0.038 \\ 0.818 \pm 0.010 \\ 0.859 \pm 0.033 \\ 0.649 \pm 0.026 \end{array}$	$\frac{0.825 \pm 0.007}{0.814 \pm 0.008} \\ \frac{0.886 \pm 0.015}{0.678 \pm 0.012}$	$\begin{array}{c} 0.778 {\pm} 0.046 \\ \hline 0.842 {\pm} 0.008 \\ 0.919 {\pm} 0.008 \\ \hline 0.685 {\pm} 0.025 \end{array}$	$\begin{array}{c} 0.756{\pm}0.023\\ \underline{0.837{\pm}0.009}\\ \overline{0.861{\pm}0.018}\\ 0.669{\pm}0.030\end{array}$		

TDC Serves the Whole Lifecycle




21

And Innovation!

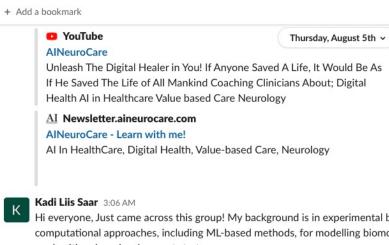

And Innovation!

More Coming Soon

- 3D pocket molecule generation datasets.
- 3D representation convertor
- Protein representation with Graphein

Slack Channel for Users

К


C

new-member ~ Introduce yourself!

Threads

- പ്പ All DMs
- @ Mentions & reactions
- □ Saved items
- Slack Connect
- : More
- Starred
- # announce
- # feature-request
- # job-posting
- # new-member
- # random
- Channels
- A core-team
- A tdc-dev
- + Add channels
- Direct messages
- Slackbot
- 🕵 Kexin you
- Bharath Ramsundar
- 🔞 Gökco Uludoğan
- @ new-member

Kadi Liis Saar 3:06 AM

Hi everyone, Just came across this group! My background is in experimental biophysical chemistry and I am now developing various computational approaches, including ML-based methods, for modelling biomolecular interactions. My work is mostly academic but I also work with a drug development startup.

NeuroCare

I wondered if people in this group were keen for a virtual meetup, maybe with some speed-dating element?

Saturday, August 14th ~

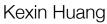
Haoran Liu 8:47 AM

Howdy! Wonderful work by TDC! I am Haoran Liu, a first year PhD student in Texas A&M majoring in Computer Science. Prior to TAMU, I graduated from Waseda University, Japan. My current research topic focus on Deep Graph Learning+BioMed, including molecule/RNA/DNA structure prediction/generation. I don't have any Biology background but I am very interested in all kind of therapeutics science topics. Welcome to discussion and collaboration in AI+Bio!

Mess	age #	new-r	nember															
B	В	Ι	S <b< th=""><th>0</th><th>12</th><th>Ξ</th><th>E</th><th>451</th><th></th><th></th><th>Aa</th><th>@</th><th>:</th><th>Û</th><th>C)</th><th>Ŷ</th><th>\geq</th><th>~</th></b<>	0	12	Ξ	E	451			Aa	@	:	Û	C)	Ŷ	\geq	~

#new-member: introduce and connect **#announce**: update from TDC team **#feature-request**: discuss new features #job-posting: sharing relevant positions

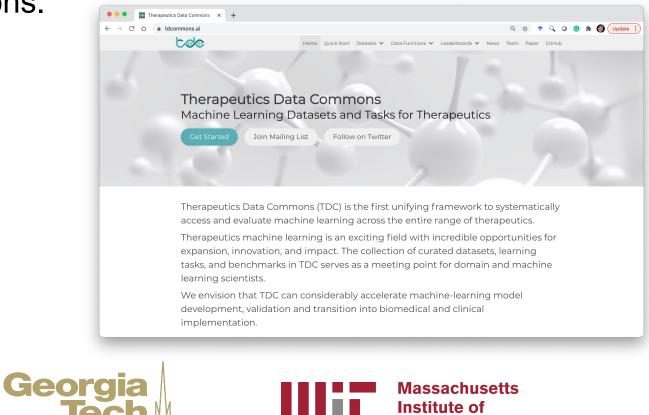
tinyurl.com/tdc-slack



TDC is an Open Science Initiative!

We welcome contributions from valuable therapeutic problems posing • to data deposit and adding functions. Therapeutics Data Commons - × +

Tianfan Fu



University

Marinka Zitnik

https://tdcommons.ai

ILLINOIS

