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Artificial intelligence foundation for  
therapeutic science
Artificial intelligence (AI) is poised to transform therapeutic science. Therapeutics Data Commons is an initiative to 
access and evaluate AI capability across therapeutic modalities and stages of discovery, establishing a foundation 
for understanding which AI methods are most suitable and why.
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Safe and effective medications are 
needed to meet the medical needs of 
billions worldwide, which are driven 

by aging populations and increasing insight 
into disease burden. However, getting a 
novel drug to the market currently takes 
13–15 years and US$2–3 billion, on average1. 
Faced with skyrocketing costs and high 
failure rates, researchers are looking at ways 
to make drug discovery and development 
more efficient through automation, artificial 
intelligence (AI) and new data modalities2,3. 
AI has become woven into therapeutic 
discovery since the emergence of deep 
learning4. It stands out as an approach to 
guide discovery5 by finding and extracting 
actionable predictions that lend themselves 
to hypotheses testable in the laboratory. AI 
tools are assisting therapeutic discovery and 
development by finding novel antibacterial 
drugs6, identifying opportunities to repurpose 
existing drugs for emerging pathogens7 and 
creating accurate protein structures8, among 
other applications5,9. To support the adoption 
of AI in therapeutic science, we need a 
composable machine learning foundation 
spanning the stages of drug discovery that 
can help implement AI methods most 
suitable for drug discovery applications.

Although biological and chemical research 
generates a wealth of data, most generated 
datasets are not readily suitable for AI 
analyses because they are incomplete. First, 
the lack of AI-ready datasets and standardized 
knowledge representations prevent scientists 
from formulating relevant questions in drug 
discovery as solvable AI tasks — posing the 
challenge of how to link scientific workflows, 
protocols and other information into 
computable knowledge. Second, datasets can 
be multimodal and of many different types, 
including experimental readouts, curated 
annotations and metadata, and are scattered 
around biochemical repositories — posing 
the challenge of how to collect and annotate 
datasets to establish best practices for AI 
analysis, as poor understanding of the data 

can lead to misinterpreted results and misused 
methods. Finally, despite the promising in 
silico performance of AI methods, their use 
in practice, such as for rare diseases and 
novel drugs in development, has been limited 
— posing the challenge of how to assess 
methodological advances in a manner that 
allows robust and transparent comparison 
and represents what one would expect in a 
real-world implementation. To this end, AI 
methods and datasets must be integrated, and 
data stewardship strategies must be developed 
to reduce data-processing and data-sharing 
burdens. This includes optimally balanced 
and algorithmically sound approaches 
to ensure that biochemical information 
(including genomic data) is findable, 
accessible, interoperable and reusable10, as 
well as engaging communities in determining 
what data are needed. Such developments 
should be done in an open-source culture to 
build consensus and enable the development 
and implementation of best-in-class AI 
methods in drug discovery.

Robust foundation, modern data  
management, AI infrastructure
To establish an open-science machine 
learning foundation for drug discovery  
and development, we created Therapeutics 
Data Commons (TDC), a resource to  
access and evaluate AI methods across 
therapeutic modalities and stages of 
discovery (Fig. 1). At its core, TDC is a 
collection of AI-solvable tasks, AI-ready 
datasets and curated benchmarks. So far, 
TDC contains 66 AI-ready datasets that span 
a total of 15,919,332 data points and are 
spread across 22 problems in drug discovery. 
Tasks and datasets in TDC cover a wide 
range of therapeutic products (15 tasks  
for small molecules, including drug 
response and synergy prediction; 8 tasks for 
macromolecules, including paratope and 
epitope prediction; and 2 tasks for cell and 
gene therapies, including CRISPR repair 
prediction) across all stages of discovery  

(5 target-discovery tasks, such as 
identification of disease-associated 
therapeutic targets; 13 activity-modeling 
tasks, such as quantum-mechanical energy 
prediction; 6 drug efficacy and safety 
tasks, such as molecule generation; and 4 
manufacturing tasks, such as yield outcome 
prediction). These datasets encompass 
diverse biological and chemical entities, 
including 4,264,939 compounds, 34,314 
genes, 3,656 antibodies, 3,983 antigens, 
59,951 peptides, 225 major histocompatibility 
complexes, 7,095 diseases, 1,010 cell lines, 
1,521 guide RNAs, 3,465 microRNAs and 
1,994,623 chemical reactions. Datasets in 
TDC range in size from 242 to 4,649,441 
data points, demonstrating the need for AI 
capability to learn on both small and massive 
datasets11. All datasets in TDC are AI ready, 
meaning that input features are processed 
into a machine-readable format, such that 
they can be directly used as input to train AI 
models. TDC is organized into a three-tiered 
hierarchical system (Fig. 2a) to provide an 
integrated resource and accommodate new 
drug-discovery applications and data as they 
become available (Fig. 2b).

TDC contains data-processing and 
algorithmic functions to support AI method 
development (Fig. 2c). It provides five 
strategies to split datasets into training 
sets to train AI models, validation sets to 
select model hyperparameters, and test 
sets to evaluate model performance and 
assess whether models can generalize 
to data points not seen during training. 
Dataset splits in TDC (for example, 
scaffold split, temporal split, cold-start split 
and combination split) are theoretically 
grounded in machine learning research 
and designed to mimic real-world uses of 
AI in therapeutic science. Further, TDC 
implements 23 strategies for performance 
evaluation to compare different methods 
to each other, understand their failures and 
successes, and assess whether predictions 
can generalize to completely new 
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scenarios. Furthermore, TDC provides 11 
data-processing helpers, such as data format 
conversion, visualization, database querying, 
unit conversion and molecule filtering.

In addition to predictive modeling, 
AI methods can produce new designs12. 
Data-driven design is distinguished from 
predictive modeling by the fact that it seeks to 
construct objects with desired properties, such 
as proteins that bind to therapeutic targets. 
The design of objects typically requires 
iterative, labor-intensive experimentation 
(such as measuring protein binding affinity) 
or computationally intensive physics 
simulations (such as computing low-energy 

structures). Increasingly, however, attempts 
are being made to supplement experimental 
measurements with calls to high-capacity 
generative models that can find optimal 
design candidates13. AI-based design involves 
optimizing the input space (e.g., chemical 
space of molecular structures) to find objects 
that satisfy the design criteria. The design 
criteria are described by proxy models, 
typically referred to as oracles14, that evaluate 
whether generated candidates are likely to 
have the desired properties and thus lend 
themselves to testable hypotheses that can be 
studied in the laboratory. When generative 
AI methods are used to produce new designs, 

they encounter challenges distinct from those 
arising in other uses of AI. For example, 
critically, generative models will never have 
seen any objects with desired properties, 
meaning that the models must be able to 
extrapolate beyond the training distribution. 
Further, generative models must be data 
efficient, as even in silico screens may involve 
intractably large datasets. To that end, and 
to assist with the study of generative models, 
TDC implements 17 molecule-generation 
oracles to support applications in molecular 
docking, de novo molecule generation and 
the design of compounds with drug-like 
properties15,16.

When evaluating AI methods to decide 
which are most suitable for transition into 
biomedical and clinical implementation, one 
must go beyond the accuracy of predictions 
and consider various dimensions of 
method performance, including robustness, 
interpretability and whether the method 
behaves responsibly6,17,18. For example, it 
can be informative to examine trade-offs 
between simpler, faster and interpretable 
methods versus complex, slower but more 
accurate methods. TDC provides public 
leaderboards to support systematic model 
evaluation and comparison across multiple 
dimensions (Fig. 2d). Every leaderboard is 
associated with a dataset, a dataset split and 
a set of performance metrics that evaluate 
the quality of predictions across different 
dimensions. These leaderboards evaluate the 
efficacy and generalizability of state-of-the-art 
methods for many tasks in drug discovery, 
providing effective indicators of the methods’ 
performance in real-world scenarios. So far, 
TDC hosts 29 leaderboards across 4 tasks: 
(i) 22 ADMET (absorption, distribution, 
metabolism, excretion, toxicity) leaderboards 
that probe AI methods for the ability to 
predict drug-likeliness19 (for example, 
intestinal absorption, crossing of blood–brain 
barrier, cytochrome P450 enzyme inhibition, 
half-life, hERG ion channel blocking) for 
structurally diverse compounds; (ii) 5 drug 
combination leaderboards that test AI 
methods for the ability to identify synergistic 
effects between pairs of compounds across 59 
cancer cell lines and 9 tissues20; (iii) 1 drug–
target interaction leaderboard that tests AI 
methods to predict binding affinity between 
compounds and therapeutic targets;16,21 
and (iv) 1 docking-molecule-generation 
leaderboard that evaluates generative AI 
methods to produce molecules with high 
potency and synthesizability17.

Compelling applications of the 
commons
Researchers across disciplines can use  
TDC for numerous applications (Fig. 3).  
For example, a biochemist tasked with 
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Fig. 1 | Overview of Therapeutics Data Commons. TDC is an initiative to access and evaluate machine 
learning (ML) and artificial intelligence (AI) methods across therapeutic modalities and stages of 
drug discovery. It provides numerous resources, including AI-ready datasets, machine learning tasks 
and leaderboards, to support the development, evaluation and implementation of AI methods. TDC 
contains AI-ready datasets across therapeutic modalities (small molecules, macromolecules, cell and 
gene therapies) and development pipelines (target discovery, activity modeling, efficacy and safety, and 
manufacturing). A comprehensive programming package provides data and algorithmic functions, including 
molecule-generation oracles, data processors and strategies for creating AI benchmarks indicative of 
challenges in drug discovery. Finally, TDC contains leaderboards to evaluate and compare AI methods, with 
a strong bent toward understanding which ML methods are most suitable for drug discovery applications.
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lead optimization can use models in 
TDC to find promising compounds by 
improving effectiveness, diminishing 
toxicity or increasing absorption of initial 
lead compounds19. The biochemist would 
retrieve the ADMET datasets from TDC 
and train a model to accurately predict a 
diverse set of endpoints, starting from a new 
or modified lead design (Fig. 3a). Or, to take 
another example, a biologist would carry 
out a high-throughput virtual screen to find 
high-performing compounds with affinity to 
a protein of interest in a large search space—
libraries containing anywhere from 1010 to 
1020 compounds16. The biologist uses the TDC 
drug–target interaction dataset to create a 
predictive model that scores the interactions 
between candidate compounds and a target 
protein, effectively prioritizing compounds 
by the decreasing binding affinity score 
(Fig. 3b). Such a model-guided approach 
to compound prioritization is becoming a 
drop-in replacement for exhaustive virtual 
screens. Moreover, this approach is relevant 
to experimental screening, an expensive yet 
essential tool for challenging drug-discovery 
problems. Finally, suppose a biochemist 

finds that their chemical library does not 
contain high-potency compounds that could 
bind the human dopamine receptor D3 
(DRD3). Comparing known high-performing 
compounds to molecules in the library reveals 
that additional high-performing compounds 
are located in sparse regions of the chemical 
library. The biochemist would use TDC’s 
generative AI models to explore those 
sparse regions13–15 and design compounds 
that effectively dock against DRD3. TDC 
also provides oracles for molecular docking 
that can guide generative models to explore 
different chemical space than were canvassed 
in the initial chemical library, thereby 
generating structurally diverse compounds 
that are synthesizable and likely to bind to the 
DRD3 therapeutic target15,17 (Fig. 3c).

Furthermore, advanced applications are 
possible using large-scale computational 
approaches, for which TDC provides 
documentation and tutorials. TDC can 
also be used in other ways. For example, 
users can train machine learning models 
and create web-based visualization and 
analysis tools that complement TDC’s 
software package, offering a flexible solution 

to directly view and manipulate outputs 
of complex AI models. For example, we 
integrated TDC into MolDesigner22, a 
web-based human-in-the-loop workflow 
for iterative optimization of small-molecule 
drug candidates, guided by machine 
learning predictions of ADMET properties 
and target binding affinity (Fig. 3d).

Breaking down barriers in therapeutic 
science
TDC provides benchmarks, method 
implementations and implementation tactics 
for AI in drug discovery. It can help promote 
reproducibility and limit the possibility of 
misinterpreted conclusions and misapplied 
tools. For example, a recent study23 
investigated whether generative AI methods 
could be misused for de novo design of 
biochemical weapons. A computational 
proof of concept demonstrated that simply 
inverting the logic of an AI molecule 
generator to reward both toxicity and 
bioactivity might be sufficient to steer 
the generative model towards molecules 
in a region of chemical space populated 
by predominantly lethal molecules. TDC 
and related initiatives can identify such 
potential for dual use early on and help form 
recommendations on the ethical use of AI.

Achieving broad use of AI in therapeutic 
science requires coordinated community 
initiatives that earn the trust of diverse 
groups of scientists. TDC creates a meeting 
point between biochemical and AI scientists. 
This makes it possible to look at AI from 
different perspectives and with a wide variety 
of mindsets across traditional boundaries and 
multiple disciplines. Biochemical scientists 
can pose questions and identify relevant 
datasets to be processed and integrated into 
TDC and formulated as scientifically valid 
AI tasks. AI scientists can rapidly obtain 
these tasks and retrieve processed datasets 
from TDC to develop methods and theory, 
following reporting guidelines and evaluation 
standards set by TDC. The guidelines outline 
the importance of clearly describing both 
datasets and methods, limiting potential 
unintended consequences if methods are 
applied inappropriately and sustaining and 
improving a robust foundation for AI in 
therapeutic science.

Resources in TDC are integrated into 
an open-source software package that 
implements functionality for analyses and 
efficient retrieval of datasets and provides 
programming access to TDC (Fig. 2c). TDC 
is continually updated with contributions 
from the community and is available at 
https://tdcommons.ai. ❐
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Fig. 2 | AI-ready datasets, machine learning tasks and benchmarks in Therapeutics Data Commons.  
a, TDC has a three-tier hierarchical organization, making it flexible and capable of including diverse types 
of therapeutic modalities and machine learning problems. The first tier comprises three broad categories of 
machine learning tasks: (i) single-instance prediction is concerned with the prediction of individual entities, 
such as therapeutic targets or novel drugs in development; (ii) multi-instance prediction is concerned 
with the prediction of labels for groups of entities, such as combinatorial therapies consisting of multiple 
medications; and (iii) generative problems support the generation of new entities, such as designing novel 
compounds with desired biochemical properties. In the second tier, categories in TDC contain machine 
learning tasks, with each task giving a mathematical formulation of a drug discovery problem. For example, 
the ADME task investigates pharmacokinetics to predict how a living organism processes a chemical. 
At last, in the third tier, TDC contains a collection of datasets for every task. b, TDC Python package to 
retrieve TDC datasets and supporting functions for model development and evaluation. The example 
shown is for the retrieval of the dataset TDC.SAbDab_Chen with annotated antibody structures. c, TDC has 
leaderboards for comparison and evaluation of AI methods and assessment of their readiness for transition 
into real-world implementation. Every leaderboard is associated with a benchmark consisting of a dataset, a 
dataset split and a set of performance metrics. Scientists submit AI models to TDC leaderboards, where the 
models are ranked by performance, revealing the best-performing methods.
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Fig. 3 | Example use cases of Therapeutics Data Commons. a, Suppose a biochemist tasked with lead 
optimization wants to identify compounds that are more effective, less toxic or have better absorption 
profile than initial lead compounds19. This can be easily achieved using TDC datasets by training 
machine learning models to predict the ADMET properties, such as solubility, for molecular structures 
of interest24. b, Suppose a drug developer is interested in conducting a high-throughput virtual screen 
to find high-performing compounds with affinity to a therapeutic target16, in this case 3CL protease. 
TDC formulates drug–target interaction prediction as a task in which a machine learning model predicts 
binding affinity using the sequence of a therapeutic target and the compound’s molecular structure as 
input. By learning from millions of drug–target pairs provided by TDC, the model can predict binding 
affinity for novel compounds and targets21. Drug developers would use the model to score interactions 
between the 3CL protease and compounds in the chemical library, prioritizing candidate compounds 
by decreasing binding affinity score. c, Suppose a biochemist is interested in identifying highly potent 
compounds for a therapeutic target, in this case the dopamine receptor DRD3, that are structurally 
different from compounds in a standard chemical library15,17. TDC provides a docking oracle that 
a generative AI model can query to design highly selective and potent molecules25. The quality of 
AI-generated molecules can be evaluated using the TDC synthesizability evaluator. d, TDC can power 
web-based analysis tools to directly view and interpret the outputs of complex AI models. Shown is an 
interactive tool22 to iteratively design new compounds using AI guidance. A drug developer enters the 
amino acid sequence of interest and draws the compound structure (alternatively, the user can upload 
the compound file using established formats, such as SDF or MOL), and the tool outputs predicted 
binding affinity and chemical properties.
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