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Autonomous platforms for data-
driven organic synthesis
Wenhao Gao1, Priyanka Raghavan1 & Connor W. Coley 1,2✉

Achieving autonomous multi-step synthesis of novel molecular structures in
chemical discovery processes is a goal shared by many researchers. In this
Comment, we discuss key considerations of what an ideal platform may look like
and the apparent state of the art. While most hardware challenges can be
overcome with clever engineering, other challenges will require advances in both
algorithms and data curation.

A framework for autonomous synthesis
In the iterative design, synthesis, and testing of new functional molecules, the rate at which
candidate molecules can be physically realized often limits the rate at which computational
designs can be validated. Platforms capable of performing chemical reactions in an automated or
semi-automated manner, where the physical operations of a chemist are replaced by robotics and
the planning by data-driven algorithms, can potentially mitigate this bottleneck.

The actualization of autonomous, data-driven organic synthesis will rely on advances in both
hardware and software capabilities to overcome a combination of both practical and scientific
challenges1. In this Comment, we outline the major considerations that must be made to design
autonomous platforms for target-oriented synthesis, progressing from the execution hardware,
to synthesis planning, to adaptiveness and error handling, and finally to self-learning (Fig. 1).

Hardware requirements and desiderata
The basis of automated chemistry is the modularization of common physical operations to
perform reactions: transferring a prescribed amount of starting materials to a reaction vessel,
heating or cooling that vessel while mixing, purifying/isolating the desired product, analyzing the
product, and using it in subsequent reaction steps. Fortunately, many requisite hardware units
for such tasks have already been commercialized, such as liquid handling robots, robotic grippers
for plate or vial transfer, computer-controlled heater/shaker blocks, and autosamplers for ana-
lytical instrumentation. Therefore, a straightforward (but not simple) paradigm for automated
chemistry is to automate operations and sample transfer steps between existing lab hardware,
exemplified by Burger et al.’s mobile robot chemist2.

At the core of organic synthesis, automated reactions are run either in a flow or batch manner,
with stirring, heating, and/or cooling capabilities. Key additional considerations when designing
these automation components include minimizing evaporative losses, performing air-sensitive
chemistries, and maintaining precise temperature control; all are addressable through engi-
neering. An early platform, ChemKonzert, automated multi-step syntheses by replacing manual
transfer operations with pumps but otherwise adhering to a typical batch process in round
bottom flasks, separation flasks, and filters3—a paradigm since advanced and expanded upon by
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the Chemputer4. Additionally, from a practical standpoint,
accessing a diverse chemical space requires equipping the plat-
form with a suitably large chemical inventory of building blocks
and reagents, otherwise these must be manually prepared prior to
any synthesis. In medicinal chemistry applications, Eli Lilly has
been a leader in automated multi-step synthesis by designing a
platform around microwave vials as reaction vessels5, with sig-
nificant ongoing investments in automation more broadly
including a chemical inventory able to store five million
compounds6. Flow platforms too can be automated for target-
oriented synthesis using computer-controlled pumps and flow-
path reconfiguration7,8, though they require additional planning
considerations (e.g., solubility).

Following the reaction, liquid chromatography–mass spectro-
metry (LC/MS) is most commonly used for analysis or quanti-
tation. Multi-step reactions add a layer of complexity, as crude
products must be isolated and resuspended in solvent between
reactions. This invites new challenges with regards to the auto-
mation of solution transfer between the reaction area and the
purification and analysis unit. Constraining the reaction space
to a specific subset can mitigate the burden of purifica-
tion as exemplified by Burke’s iterative MIDA-boronate coupling
platform that uses a catch and release method applicable to a
specific reaction;9 however, a universally applicable purification
strategy does not yet exist.

Synthetic planning including and beyond retrosynthesis
At a high-level, an autonomous chemistry platform must decide
what it intends to do (as a chemist might describe it) and then
translate that into what it should actually do (in terms of physical
operations). The latter step is dependent on available hardware
operations, but can leverage protocols intended to be hardware-
agnostic, such as the chemical description language (XDL)10.
When targeting structures without known experimental proce-
dures, the former step requires developing software tools
for computer-aided synthesis planning, including and beyond
retrosynthesis.

Computer-aided retrosynthesis has arguably existed almost
since the concept of retrosynthesis itself, but has failed to gain
traction due to a perception that proposed routes are of low
quality. As a turning point, Segler et al.11 pioneered a data-driven
approach using a Monte Carlo tree search that passed a “chemical
Turing test”, wherein graduate-level organic chemists expressed

no statistically significant preference between literature-reported
routes and the program’s. Mikulak-Klucznik et al.12 further
demonstrated that this approach is viable for complex natural
products with their expert (not data-driven) program, Synthia.
Their successes have catalyzed an interest in developing neural
models that learn allowable chemical transformations from
reaction databases. These models are commonly divided into
template-based and template-free approaches depending on
whether the model makes use of symbolic pattern-matching rules.
Both types have been incorporated with semi-automated synth-
esis platforms to streamline target-oriented organic synthesis, for
example, with Coley et al.’s ASKCOS7 and IBM’s integration with
commercial hardware13. However, successful applications of data-
driven retrosynthesis with automation have been relatively simple
molecules, where few (1–5) steps are required and where ste-
reocenters are typically sourced from building blocks rather than
installed.

It is essential to recognize that retrosynthesis is merely the first
step of autonomous organic synthesis, as it does not address
numerous practical considerations. Experimental execution of a
synthetic route requires specification of quantitative reaction
conditions—amounts of each reactant, solvent(s), temperature,
time, etc.—and how this translates into a detailed action sequence
for the hardware to follow, at the very least specifying order of
addition. Subtle changes in procedure can significantly affect the
reaction outcomes, but these subtleties are missing from current
databases, and therefore are also missing from current data-
driven tools14. Proposed synthetic routes also require further
scoring and ranking in terms of their automation compatibility,
perhaps tailored to a specific hardware platform, not just che-
mical feasibility. These steps remain largely unaddressed.

Error handling and robustness to mispredictions
The need for precise planning can be partially mitigated with
platforms that can cope with mispredictions and are able to
adaptively determine a suitable action sequence through
trial and error. The optimization of reaction yields or selectivities
by modulating reaction conditions is a decades-old task, with
recent demonstrations including applications of statistical opti-
mization to multi-step flow chemistry15, as well as applications of
Bayesian optimization16. Predicted conditions may be suitable as
an initial guess to be further improved through empirical opti-
mization. This workflow of incorporating reaction screening and

Fig. 1 A high-level workflow for autonomous data-driven organic synthesis. This process requires the close integration of synthesis planning and
synthesis execution, linked by data that captures details of reaction and purification processes and their outcomes.
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optimization between synthesis planning and multi-step synthesis
is exemplified by SRI’s SynFini8.

However, even this basic level of adaptivity relies on a number
of capabilities that are not trivial to automate, such as confirming
product identities and quantifying their yields without relying on
a user-provided product standard or calibration curve. Most
platforms are currently equipped with only LC/MS, while struc-
tural elucidation or quantitation may require instruments such as
nuclear magnetic resonance (NMR) or corona aerosol detection
(CAD), the latter of which promises to enable universal calibra-
tion curves. While the hardware challenges can be overcome
through engineering efforts, the computer-assisted structural
elucidation and prediction of analytical response factors would
benefit from renewed attention.

“Failures” in autonomous target-oriented synthesis will often
be more dire than a subpar yield. Chemistry is sufficiently com-
plex that predictive models might never be perfectly predictive of
physical reality; moreover, we may wish to explore new reactivity,
which by some definitions is inherently less predictable. A key
reaction step might not produce any desired product, warranting
a complete revision of that route to circumvent that false-positive
prediction. Flow chemistry platforms may be prone to clogging
and therefore necessitate a means to detect and recover from such
events. Plate-based or vial-based platforms are in principle more
robust, provided that the reaction vessel is disposable and can
simply be discarded if the procedure fails.

Self-learning and improvement
Beyond handling errors during synthesis, an ideal autonomous
platform would learn and improve over time just as a chemist
accrues knowledge and experience throughout their career.
Arguably, these attributes of continual learning and the ability to
respond to unforeseen outcomes are what would make a platform
autonomous, rather than merely automated.

There are at least two factors that complicate this goal of life-
long learning for data-driven platforms. First, the volume of data
generated by a single platform will be overshadowed by the his-
torical reactions tabulated in reaction databases; for new data to
influence predictions, it may need to be treated separately by the
algorithms (e.g., as a fine-tuning set) rather than integrated with a
broader knowledge base. Second, the type of generated data will
be qualitatively different from existing databases: it has the
potential to be far richer in terms of procedural details and
analytical chemistry, but will likely be unable to match the sub-
strate diversity of published reactions given a practically sized
chemical inventory. How to leverage this multi-modality is a new
challenge in algorithm design.

Outlook
Many elements of an autonomous platform for data-driven
organic synthesis exist, yet we will continue to be stuck in the
proof-of-concept phase unless several shortcomings are resolved.
The level of precision required to execute synthetic pathways is
not matched by the planning algorithms, and key challenges such
as purification design remain almost entirely unaddressed. Data
availability is a particular impediment, although nascent efforts
like the Open Reaction Database17 may address this in time.
Transitioning from “automation” to “autonomy” implies a certain
degree of adaptiveness that is difficult to achieve with the limited
analytical capabilities of many platforms. While already useful in
isolation, these platforms will be particularly enabling when
integrated with molecular design algorithms for function-oriented

synthesis. In this setting, one can reconsider the role these plat-
forms are meant to play: the ability to achieve any target mole-
cular function may be more important than the ability to achieve
any target molecular structure, which could make certain plat-
form limitations (e.g., in terms of scope of reaction types) per-
fectly acceptable.
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