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Molecular design: key to many societal challenges

2Rossari, F., Minutolo, F., & Orciuolo, E. (2018). Journal of hematology & oncology, 11(1), 1-14.
https://www.chemistryworld.com/news/organic-solar-cells-reach-manufacturing-milestone/7439.article

• Properties are fully determined by structure.
• Solutions to many of grand challenges 

(health, energy, sustainability, etc) require 
novel functional molecules.
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Molecular design: screening and de novo design

Sanchez-Lengeling, B., & Aspuru-Guzik, A. (2018). Science, 361(6400), 360-365. 5

𝑚 = argmax 𝑓(𝑚)
𝑚 ∈ Chemical Space
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A successful example in drug discovery

Zhavoronkov, A.,... & Aspuru-Guzik, A. (2019). Nature biotechnology, 37(9), 1038-1040. 8

• Zhavoronkov et al. applied GENTRL successfully identified an inhibitor for DDR1 
kinase.

• Years à 1.5 months



Synthesizability: a major bottleneck

Kutchukian, Peter S., and Eugene I. Shakhnovich. Expert opinion on drug discovery 5.8 (2010): 789-812.
https://twitter.com/andrewwhite01/status/1468302573950148609 9

• Zhavoronkov et al. manually 
selected only 6 molecules from 40 
based on synthetic accessibility 
(initial generated pool: 30,000)

https://twitter.com/andrewwhite01/status/1468302573950148609


Synthesizability is not just another metric

• Sheridan, Robert P., et al. Journal of chemical information and modeling 54.6 (2014): 1604-1616.
• Ertl, Peter, and Ansgar Schuffenhauer. Journal of cheminformatics 1.1 (2009): 8.
• Coley, Connor W., et al. Journal of chemical information and modeling 58.2 (2018): 252-261.

10

Challenges:

• Intuitive and subjective concept

• Highly “nonlinear” w.r.t. structure

• Sensitive to chemical availability
✔

X
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Former attempts:

• Crowd source scoring (e.g. 
meanComplexity)

• Based on structural 
complexity (e.g. SA_Score)

• Based on synthetic 
pathway (e.g. SCScore)



Computer-aided synthesis analysis (CASP)

Coley, C. W., Green, W. H., & Jensen, K. F. (2018). Accounts of chemical research, 51(5), 1281-1289. 12

ASKCOS
Our group’s implementation

https://github.com/connorcoley/ASKCOS



CASP serves as a synthesizability measurement

Gao, W., & Coley, C. W. (2020). JCIM, 60(12), 5714-5723. 13

• Computer-Aided Synthesis Planning 
(CASP) is an alternative to expert 
scoring:
o Capture the high ``non-linearity'' of  

synthesizability.
o Recommend actionable synthetic 

pathways.
o Can be accessed unlimitedly.
But:
o Time-consuming (~1min/molecule)

✔

X



ASKCOS to benchmark synthesizability

Gao, W., & Coley, C. W. (2020). Journal of chemical information and modeling, 60(12), 5714-5723. 14

• We evaluated the methods in Guacamol and found most molecular optimization 
methods are worse than screening.



Synthetic tree generation: coupling design and CASP
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• Synthetic pathway can be abstracted into 
a tree structure

• Both synthesizable molecular design and 
CASP involve looking for a synthetic tree:
o Synthesis Planning is to generate

synthetic trees whose product
molecules matches the target
molecule.

o Synthesizable Molecular Design is to 
optimize the properties of interest of 
the product molecule w.r.t. the 
structure of a synthetic tree.



From DoG-AE/Gen and Retro-DoG

16

• The DoG models relies on a forward reaction predictor that:
o All forward reaction predictors suffer from the bias of positive reaction data.
o Don’t explicitly use the information of intermediate molecular structures, thus the model 

need to learn to approximate the reaction prediction model.

Bradshaw, J., Paige, B., Kusner, M. J., Segler, M. H., & Hernández-Lobato, J. M. NeurIPS 2021.



From DoG-AE/Gen and Retro-DoG
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• Retro-DoG cannot recover target molecules, e.g. cannot perform synthesis 
planning.

Bradshaw, J., Paige, B., Kusner, M. J., Segler, M. H., & Hernández-Lobato, J. M. NeurIPS 2021.



Synthetic tree generation as a Markov decision process
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• State Space 
o States are defined as root molecule(s) of an intermediate synthetic tree. 
o We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at 

most two root molecules and (2) expansions always take place from the most recent one.

• Action Space
o One reaction step is an action step.
o Define 4 types of actions: Add, Expand, Merge, End

• State Transition Dynamics

• Reward

∅

Bulding Blocks Products

Most Recent Molecule Target Molecule
Uni-molecular reactionBi-molecular reaction

Synthetic tree



Synthetic tree generation as a Markov decision process

19

• State Space 
o States are defined as root molecule(s) of an intermediate synthetic tree. 
o We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at 

most two root molecules and (2) expansions always take place from the most recent one.

• Action Space
o One reaction step is an action step.
o Define 4 types of actions: Add, Expand, Merge, End

• State Transition Dynamics

• Reward
Add

∅

Bulding Blocks Products

Most Recent Molecule Target Molecule
Uni-molecular reactionBi-molecular reaction



Synthetic tree generation as a Markov decision process

20

• State Space 
o States are defined as root molecule(s) of an intermediate synthetic tree. 
o We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at 

most two root molecules and (2) expansions always take place from the most recent one.

• Action Space
o One reaction step is an action step.
o Define 4 types of actions: Add, Expand, Merge, End

• State Transition Dynamics

• Reward
Add Expand

∅

Bulding Blocks Products

Most Recent Molecule Target Molecule
Uni-molecular reactionBi-molecular reaction



Synthetic tree generation as a Markov decision process

21

• State Space 
o States are defined as root molecule(s) of an intermediate synthetic tree. 
o We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at 

most two root molecules and (2) expansions always take place from the most recent one.

• Action Space
o One reaction step is an action step.
o Define 4 types of actions: Add, Expand, Merge, End

• State Transition Dynamics

• Reward
Add AddExpand

∅

Bulding Blocks Products

Most Recent Molecule Target Molecule
Uni-molecular reactionBi-molecular reaction



Synthetic tree generation as a Markov decision process

22

• State Space 
o States are defined as root molecule(s) of an intermediate synthetic tree. 
o We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at 

most two root molecules and (2) expansions always take place from the most recent one.

• Action Space
o One reaction step is an action step.
o Define 4 types of actions: Add, Expand, Merge, End

• State Transition Dynamics

• Reward
Add AddExpand Expand

∅

Bulding Blocks Products

Most Recent Molecule Target Molecule
Uni-molecular reactionBi-molecular reaction



Synthetic tree generation as a Markov decision process

23

• State Space 
o States are defined as root molecule(s) of an intermediate synthetic tree. 
o We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at 

most two root molecules and (2) expansions always take place from the most recent one.

• Action Space
o One reaction step is an action step.
o Define 4 types of actions: Add, Expand, Merge, End

• State Transition Dynamics

• Reward
Add AddExpand Expand Merge

∅

Bulding Blocks Products

Most Recent Molecule Target Molecule
Uni-molecular reactionBi-molecular reaction



Synthetic tree generation as a Markov decision process
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• State Space 
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Synthetic tree generation as a Markov decision process
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• State Space

• Action Space

• State Transition Dynamics
o To ensure each reaction step is chemically 

plausible:
▪ Machine learning reaction prediction model.
▪ Domain-specific reaction rules encoded as reaction 

templates.

o We reject all reactions don’t follow a known 
template.

• Reward
o Matching between product molecule and target 

molecule
o The properties of interest of the product molecule.



Conditional generation for synthesis planning
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• Synthesis planning is a probabilistic modeling of synthetic trees conditioned 
on a target molecule.
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Model architecture
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Most recent 
molecule 

embedding

Another root 
molecule

embedding

Target 
molecule 

embedding

⊕

State
embedding

Action Network

Reactant1 Network

Reaction Network

Reactant2 Network

Action

Reactant1

Reaction

Reactant2

Update 
synthetic tree

Masked Classification

Masked Classification

k-Nearest Neighbor Search

k-Nearest Neighbor Search

• Morgan fingerprints with radius 2 and 4096 bits are used to represent molecules.

• Action and Reaction networks are classifiers, reactants networks are regressors.

• We mask out illegal actions and conduct k-NN search to select reactants.



Genetic algorithm for synthesizable molecular design
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Decoding

Selection

Crossover 
and 

Mutation

• GA on fingerprints:
o From a random sampled 128 

from ZINC, offspring size is 
512, tried up to 200 
generations

o Crossover: inherit about half 
from one and remaining from 
another, higher probability to 
sample high scored element.

o Mutation: with a probability 
(0.5) flip a number of bits (24)

Parents

Offsprings

Molecules



Data preparation and training
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• Reaction templates: Combined 91 reaction templates (42 from Button’s, 49 
from Hartenfeller’s), 13 uni-mol, 78 bi-mol.

• Purchasable compounds: Enamine building blocks, US stock (147,505).

• Data: Synthetic trees are generated by randomly applying applicable 
templates to randomly selected purchasable compounds, filtered by QED 
(drug-likeliness) of root molecules: 208,644 synthetic paths for training, 
69,548 for validation and testing each.

• Each network is trained as a separate supervised learning problem using a 
subset of information from the known synthetic routes.

Hartenfeller, M.,... & Renner, S. (2011). Journal of chemical information and modeling, 51(12), 3093-3098.
Button, A., Merk, D., Hiss, J. A., & Schneider, G. (2019). Nature machine intelligence, 1(7), 307-315.



Synthesis Planning

30

N Recovery rate Average Similarity KL Divergence FC DIstance

Reachable (test set) 69,548 51.0% 0.508 0.995 0.067

Unreachable (ChEMBL) 20,000 4.5% 0.396 0.966 1.994

• We construct synthetic trees for testing data as “reachable” data and a 
random sample from ChEMBL as “unreachable” data.

• We use k=3 in the nearest neighbor search of first reactant, and k=1 for the 
remaining. (~1s/mol, ~1min/mol for MCTS)

• In the unrecovered cases, the output molecules could also serve as a 
synthesizable structural analog.



Synthesis Planning
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Synthesizable Analog Recommendation
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Synthesizable Analog Recommendation
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Synthesizable molecular optimization
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JNK3 GSK3β QED

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

GCPN 0.57 0.56 0.56 0.57 0.56 0.56 0.948 0.947 0.946

MolDQN 0.64 0.63 0.63 0.54 0.53 0.53 0.948 0.948 0.948

GA+D 0.81 0.80 0.80 0.79 0.79 0.78 - - -

MARS 0.92 0.91 0.90 0.95 0.93 0.92 0.948 0.948 0.948

DST 0.97 0.97 0.97 0.95 0.95 0.95 0.947 0.946 0.946

Our method 0.80 0.78 0.77 0.94 0.93 0.92 0.948 0.948 0.948

• To validate our model, we first consider common heuristic oracle functions 
relevant to drug discovery

• Our model consistently outperforms GCPN and MolDQN, and is comparable 
to GA+D and MARS across different tasks.

GCPN: You, J., Liu, B., Ying, R., Pande, V., & Leskovec, J. (2018). arXiv preprint arXiv:1806.02473.
MolDQN: Zhou, Z., Kearnes, S., Li, L., Zare, R. N., & Riley, P. (2019). Scientific reports, 9(1), 1-10.
GA+D: Nigam, A., Friederich, P., Krenn, M., & Aspuru-Guzik, A. (2019). arXiv preprint arXiv:1909.11655.
MARS: Xie, Y., Shi, C., Zhou, H., Yang, Y., Zhang, W., Yu, Y., & Li, L. (2021). arXiv preprint arXiv:2103.10432.
DST: Fu, T., Gao, W., Xiao, C., Yasonik, J., Coley, C. W., & Sun, J. (2021). arXiv preprint arXiv:2109.10469.



Synthesizable Molecular Optimization
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GSK3β = 0.94
Top-1 from our model

GSK3β = 0.95
Top-1 from MARS

GSK3β = 0.79
Top-1 from GA+D

GSK3β = 0.97
Top-1 from DST

Synthetic pathway:
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Synthesizable Molecular Optimization
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JNK3 = 0.80
Top-1 from our model

GSK3B = 0.92
Top-1 from MARS

GSK3B = 0.81
Top-1 from GA+D

GSK3B = 0.97
Top-1 from DST
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Optimizing docking score w/ TDC generative benchmark

• To simulate a more realistic case, we optimized docking score against two 
important disease targets

• We limit the number of oracle calls less than 5000.

dopamine D3 receptor (PDB ID: 3PBL) Mpro of SARS-Cov-2 (PDB ID: 7L11)

Huang, Kexin, et al. "Therapeutics data Commons: machine learning datasets and tasks for therapeutics." arXiv preprint arXiv:2102.09548 (2021).



Optimizing docking score against dopamine D3 receptor 

38

• Good structure quality: Our model achieved high passing rate of quality filter 
and low SA_Score.

Huang, Kexin, et al. "Therapeutics data Commons: machine learning datasets and tasks for therapeutics." NeurIPS 2021



Optimizing docking score against dopamine D3 receptor 
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Vina score = -12.3 kJ/mol
Top-1 from our model

Vina score = -8.62 kJ/mol
Known Inhibitor

Vina score = -11.9 kJ/mol
2nd from our model

Vina score = -11.8 kJ/mol
3rd from our model

Synthetic pathway:
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Optimizing docking score against Mpro of SARS-Cov-2
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Vina score = -10.50 kJ/mol
Top-1 from our model

Vina score = -8.96 kJ/mol
Known Inhibitor

Vina score = -9.31 kJ/mol
2nd from our model

Vina score = -9.25 kJ/mol
3rd from our model
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Limitation
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• Reaction templates are not perfect.

• A depth-first order leads to a canonical order of reactants, which is 
unphysical (DAG-type MDP and tree-type MDP).

• A binary presence-based fingerprint cannot distinguish repeating units.

• The first reactant selection is the bottleneck (~30%).

Target Molecule Output Molecule, similarity=0.850



Conclusion

42

• We formulate the tasks of multi-step synthesis planning and synthesizable 
molecular design as a single shared task of conditional synthetic tree generation. 

• We formulate a Markov decision process to model the generation of synthetic 
trees, allowing the generation of multi-step and convergent synthetic pathways. 

• We propose a model that is capable of (1) rapid bottom-up synthesis planning 
and (2) constrained molecular optimization that can explore a chemical space 
defined by reaction templates and purchasable starting materials. 

• We demonstrate encouraging results on the recovery of molecules via 
conditional generation and on de novo molecular optimization with multiple 
objective functions relevant to bioactive molecule design and drug discovery. 
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