Molecular Synthesizability and Synthetic Tree Generation for Synthesizable Molecular Design

Wenhao Gao

Chemical Engineering, MIT

01/26/2022

Gao, W., & Coley, C. W. (2020). The synthesizability of molecules proposed by generative models. *JCIM*, *60*(12), 5714-5723. Gao, W., Mercado, R., & Coley, C. W. (2021). Amortized Tree Generation for Bottom-up Synthesis Planning and Synthesizable Molecular Design. *ICLR* 2022.

Molecular design: key to many societal challenges

- Properties are fully determined by structure.
- Solutions to many of grand challenges (health, energy, sustainability, etc) require novel functional molecules.

Rossari, F., Minutolo, F., & Orciuolo, E. (2018). *Journal of hematology & oncology*, *11*(1), 1-14. https://www.chemistryworld.com/news/organic-solar-cells-reach-manufacturing-milestone/7439.article

Molecular design: key to many societal challenges

- Properties are fully determined by structure.
- Solutions to many of grand challenges (health, energy, sustainability, etc) require novel functional molecules.

Rossari, F., Minutolo, F., & Orciuolo, E. (2018). *Journal of hematology & oncology*, *11*(1), 1-14. https://www.chemistryworld.com/news/organic-solar-cells-reach-manufacturing-milestone/7439.article

Molecular design: key to many societal challenges

- Properties are fully determined by structure.
- Solutions to many of grand challenges (health, energy, sustainability, etc) require novel functional molecules.

Rossari, F., Minutolo, F., & Orciuolo, E. (2018). *Journal of hematology & oncology*, *11*(1), 1-14. https://www.chemistryworld.com/news/organic-solar-cells-reach-manufacturing-milestone/7439.article

Molecular design: screening and de novo design

Molecular design: screening and de novo design

Molecular design: screening and de novo design

Sanchez-Lengeling, B., & Aspuru-Guzik, A. (2018). Science, 361(6400), 360-365.

A successful example in drug discovery

- Zhavoronkov et al. applied GENTRL successfully identified an inhibitor for DDR1 kinase.
- Years \rightarrow 1.5 months

Synthesizability: a major bottleneck

Zhavoronkov et al. manually ulletselected only 6 molecules from 40 based on synthetic accessibility (initial generated pool: 30,000)

According to my machine learning model, these 9 molecules are optimal. Please synthesize and test them. 🔗

Kutchukian, Peter S., and Eugene I. Shakhnovich. Expert opinion on drug discovery 5.8 (2010): 789-812. https://twitter.com/andrewwhite01/status/1468302573950148609

Synthesizability is not just another metric

Challenges:

- Intuitive and subjective concept
- Highly "nonlinear" w.r.t. structure
- Sensitive to chemical availability

The target on the left has a pretty straightforward synthesis, whereas the one on the right poses a significant challenge due to an unusual moiety. Our technology allows distinguishing between them extremely quickly.

- Sheridan, Robert P., et al. Journal of chemical information and modeling 54.6 (2014): 1604-1616.
- Ertl, Peter, and Ansgar Schuffenhauer. Journal of cheminformatics 1.1 (2009): 8.
- Coley, Connor W., et al. Journal of chemical information and modeling 58.2 (2018): 252-261.

Synthesizability is not just another metric

Former attempts:

- Crowd source scoring (e.g. meanComplexity)
- Based on structural complexity (e.g. SA_Score)
- Based on synthetic pathway (e.g. SCScore)

Figure 5

Average of chemist ranks for 40 test molecules (blue) compared with the computed SAscore (red). Error bars on blue points indicate standard error of mean of estimations by 9 chemists.

- Sheridan, Robert P., et al. Journal of chemical information and modeling 54.6 (2014): 1604-1616.
- Ertl, Peter, and Ansgar Schuffenhauer. Journal of cheminformatics 1.1 (2009): 8.
- Coley, Connor W., et al. Journal of chemical information and modeling 58.2 (2018): 252-261.

Computer-aided synthesis analysis (CASP)

12

CASP serves as a synthesizability measurement

- Computer-Aided Synthesis Planning (CASP) is an alternative to expert scoring:
 - Capture the high ``non-linearity'' of synthesizability.
 - Recommend actionable synthetic pathways.
 - \circ Can be accessed unlimitedly.

But:

Time-consuming (~1min/molecule)

ASKCOS to benchmark synthesizability

• We evaluated the methods in Guacamol and found most molecular optimization methods are worse than screening.

Synthetic tree generation: coupling design and CASP

- Synthetic pathway can be abstracted into a tree structure
- Both synthesizable molecular design and CASP involve looking for a synthetic tree:
 - Synthesis Planning is to generate synthetic trees whose product molecules matches the target molecule.
 - Synthesizable Molecular Design is to optimize the properties of interest of the product molecule w.r.t. the structure of a synthetic tree.

From DoG-AE/Gen and Retro-DoG

- The DoG models relies on a forward reaction predictor that:
 - All forward reaction predictors suffer from the bias of positive reaction data.
 - Don't explicitly use the information of intermediate molecular structures, thus the model need to learn to approximate the reaction prediction model.

From DoG-AE/Gen and Retro-DoG

• Retro-DoG cannot recover target molecules, e.g. cannot perform synthesis planning.

- State Space
 - States are defined as root molecule(s) of an intermediate synthetic tree.
 - We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at most two root molecules and (2) expansions always take place from the most recent one.
- Action Space
 - One reaction step is an action step.
 - o Define 4 types of actions: Add, Expand, Merge, End
- State Transition Dynamics

- State Space
 - States are defined as root molecule(s) of an intermediate synthetic tree.
 - We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at most two root molecules and (2) expansions always take place from the most recent one.
- Action Space
 - One reaction step is an action step.
 - o Define 4 types of actions: Add, Expand, Merge, End
- State Transition Dynamics
- Reward

- State Space
 - States are defined as root molecule(s) of an intermediate synthetic tree.
 - We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at most two root molecules and (2) expansions always take place from the most recent one.
- Action Space
 - One reaction step is an action step.
 - o Define 4 types of actions: Add, Expand, Merge, End
- State Transition Dynamics
- Reward

- State Space
 - States are defined as root molecule(s) of an intermediate synthetic tree.
 - We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at most two root molecules and (2) expansions always take place from the most recent one.
- Action Space
 - One reaction step is an action step.
 - o Define 4 types of actions: Add, Expand, Merge, End
- State Transition Dynamics
- Reward

- State Space
 - States are defined as root molecule(s) of an intermediate synthetic tree.
 - We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at most two root molecules and (2) expansions always take place from the most recent one.
- Action Space
 - One reaction step is an action step.
 - o Define 4 types of actions: Add, Expand, Merge, End
- State Transition Dynamics
- Reward

- State Space
 - States are defined as root molecule(s) of an intermediate synthetic tree.
 - We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at most two root molecules and (2) expansions always take place from the most recent one.
- Action Space
 - One reaction step is an action step.
 - o Define 4 types of actions: Add, Expand, Merge, End
- State Transition Dynamics

- State Space
 - States are defined as root molecule(s) of an intermediate synthetic tree.
 - We enforce a depth-first order thus at most two sub-trees can occur, which leads to (1) at most two root molecules and (2) expansions always take place from the most recent one.
- Action Space
 - One reaction step is an action step.
 - o Define 4 types of actions: Add, Expand, Merge, End
- State Transition Dynamics

24

- State Space
- Action Space
- State Transition Dynamics
 - To ensure each reaction step is chemically plausible:
 - Machine learning reaction prediction model.
 - Domain-specific reaction rules encoded as reaction templates.
 - We reject all reactions don't follow a known template.
- Reward
 - Matching between product molecule and target molecule
 - The properties of interest of the product molecule.

Conditional generation for synthesis planning

• Synthesis planning is a probabilistic modeling of synthetic trees conditioned on a target molecule.

Model architecture

- Morgan fingerprints with radius 2 and 4096 bits are used to represent molecules.
- Action and Reaction networks are classifiers, reactants networks are regressors.
- We mask out illegal actions and conduct k-NN search to select reactants.

Genetic algorithm for synthesizable molecular design

- GA on fingerprints:
 - From a random sampled 128 from ZINC, offspring size is 512, tried up to 200 generations
 - Crossover: inherit about half from one and remaining from another, higher probability to sample high scored element.
 - Mutation: with a probability
 (0.5) flip a number of bits (24)

Data preparation and training

- **Reaction templates:** Combined 91 reaction templates (42 from Button's, 49 from Hartenfeller's), 13 uni-mol, 78 bi-mol.
- Purchasable compounds: Enamine building blocks, US stock (147,505).
- Data: Synthetic trees are generated by randomly applying applicable templates to randomly selected purchasable compounds, filtered by QED (drug-likeliness) of root molecules: 208,644 synthetic paths for training, 69,548 for validation and testing each.
- Each network is trained as a separate supervised learning problem using a subset of information from the known synthetic routes.

Synthesis Planning

- We construct synthetic trees for testing data as "reachable" data and a random sample from ChEMBL as "unreachable" data.
- We use k=3 in the nearest neighbor search of first reactant, and k=1 for the remaining. (~1s/mol, ~1min/mol for MCTS)
- In the unrecovered cases, the output molecules could also serve as a synthesizable structural analog.

	Ν	Recovery rate	Average Similarity	KL Divergence	FC DIstance
Reachable (test set)	69,548	51.0%	0.508	0.995	0.067
Unreachable (ChEMBL)	20,000	4.5%	0.396	0.966	1.994

Synthesis Planning

Synthesizable Analog Recommendation

Phu

Synthesizable Analog Recommendation

Synthesizable molecular optimization

- To validate our model, we first consider common heuristic oracle functions relevant to drug discovery
- Our model consistently outperforms GCPN and MolDQN, and is comparable to GA+D and MARS across different tasks.

	JNK3			GSK3β			QED		
	1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd
GCPN	0.57	0.56	0.56	0.57	0.56	0.56	0.948	0.947	0.946
MolDQN	0.64	0.63	0.63	0.54	0.53	0.53	0.948	0.948	0.948
GA+D	0.81	0.80	0.80	0.79	0.79	0.78	-	-	-
MARS	0.92	0.91	0.90	0.95	0.93	0.92	0.948	0.948	0.948
DST	0.97	0.97	0.97	0.95	0.95	0.95	0.947	0.946	0.946
Our method	0.80	0.78	0.77	0.94	0.93	0.92	0.948	0.948	0.948

GCPN: You, J., Liu, B., Ying, R., Pande, V., & Leskovec, J. (2018). *arXiv preprint arXiv:1806.02473*. MolDQN: Zhou, Z., Kearnes, S., Li, L., Zare, R. N., & Riley, P. (2019). *Scientific reports*, *9*(1), 1-10. GA+D: Nigam, A., Friederich, P., Krenn, M., & Aspuru-Guzik, A. (2019). *arXiv preprint arXiv:1909.11655*. MARS: Xie, Y., Shi, C., Zhou, H., Yang, Y., Zhang, W., Yu, Y., & Li, L. (2021). *arXiv preprint arXiv:2103.10432*. DST: Fu, T., Gao, W., Xiao, C., Yasonik, J., Coley, C. W., & Sun, J. (2021). *arXiv preprint arXiv:2109.10469*.

Synthesizable Molecular Optimization

 $GSK3\beta = 0.94$ Top-1 from our model

 $GSK3\beta = 0.97$ Top-1 from DST

 $GSK3\beta = 0.95$ Top-1 from MARS

 $GSK3\beta = 0.79$ Top-1 from GA+D

Synthetic pathway:

Synthesizable Molecular Optimization

Optimizing docking score w/ TDC generative benchmark

- To simulate a more realistic case, we optimized docking score against two important disease targets
- We limit the number of oracle calls less than 5000.

Optimizing docking score against dopamine D₃ receptor

• Good structure quality: Our model achieved high passing rate of quality filter and low SA_Score.

Method Category			Domain-Specific Methods			Ours			
Metric	Best-in-data	# Calls	Screening	Graph-GA	LSTM	GCPN	MolDQN	MARS	SynNet
Top100 (↓)	-12.080		-10.542 ± 0.035	-14.811 ± 0.413	-13.017 ± 0.385	-10.045 ± 0.226	$-8.236{\scriptstyle\pm0.089}$	$-9.509{\scriptstyle\pm0.035}$	-11.133
Top10 (↓)	-12.590		-11.483 ± 0.056	-15.930 ± 0.336	-14.030 ± 0.421	-11.483 ± 0.581	$\textbf{-9.348}{\scriptstyle \pm 0.188}$	-10.693 ± 0.172	-12.020
Top1 (↓)	-12.800		-12.100 ± 0.356	-16.533 ± 0.309	-14.533 ± 0.525	-12.300 ± 0.993	-9.990 ± 0.194	-11.433 ± 0.450	-12.300
Diversity ([†])	0.864	5000	0.872 ± 0.003	$0.626{\scriptstyle \pm 0.092}$	$0.740{\scriptstyle \pm 0.056}$	$0.922{\scriptstyle\pm0.002}$	$0.893{\scriptstyle\pm0.005}$	$0.873{\scriptstyle\pm0.002}$	0.821
Novelty (↑)	-	5000		1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000	1.000 ± 0.000	1.000
%Pass (†)	0.780		$\underline{0.683}{\scriptstyle \pm 0.073}$	$0.393{\scriptstyle \pm 0.308}$	$0.257{\scriptstyle\pm0.103}$	$0.167{\scriptstyle \pm 0.045}$	$0.023{\scriptstyle\pm0.012}$	$0.527{\scriptstyle\pm0.087}$	0.800
LOD Pass (1)	-11.700		- 10, 100 +0,000	-14.207±0450	- L Z. 3 3 3 +0 403	-9.10/+0170	-/.980±0112	-9.000±0.082	-12.300
$SA_Score(\downarrow)$	2.973		3.036 ± 0.014	$4.783{\scriptstyle \pm 1.195}$	$2.611{\scriptstyle \pm 0.238}$	$6.843{\scriptstyle\pm0.210}$	$6.687{\scriptstyle\pm0.049}$	$3.103{\scriptstyle\pm0.011}$	<u>2.801</u>

Optimizing docking score against dopamine D₃ receptor

Vina score = -8.62 kJ/mol Known Inhibitor

Synthetic pathway:

Vina score = -12.3 kJ/mol Top-1 from our model

Vina score = -11.9 kJ/mol 2nd from our model

Vina score = -11.8 kJ/mol 3rd from our model

Optimizing docking score against M^{pro} of SARS-Cov-2

Limitation

• Reaction templates are not perfect.

- A depth-first order leads to a canonical order of reactants, which is unphysical (DAG-type MDP and tree-type MDP).
- A binary presence-based fingerprint cannot distinguish repeating units.

• The first reactant selection is the bottleneck (~30%).

Conclusion

- We formulate the tasks of multi-step synthesis planning and synthesizable molecular design as <u>a single shared task of conditional synthetic tree generation</u>.
- We <u>formulate a Markov decision process</u> to model the generation of synthetic trees, allowing the generation of multi-step and convergent synthetic pathways.
- We propose a model that is capable of (1) rapid bottom-up <u>synthesis planning</u> and (2) constrained <u>molecular optimization</u> that can explore a chemical space defined by reaction templates and purchasable starting materials.
- We demonstrate encouraging results on the recovery of molecules via conditional generation and on de novo molecular optimization with multiple objective functions relevant to bioactive molecule design and drug discovery.

Take home message

Synthetic tree design could solve molecule design and synthesis planning simultaneously.

Acknowledgement

- This work was supported by the ONR and MLPDS.
- Coley Research Group
 - Connor W. Coley
 ○
 - o Rocío Mercado
 - o Aparajita Dasgupta
 - o Thijs Stuyver
 - o Matteo Aldeghi
 - o John Bradshaw
 - o David Graff
 - o Itai Levin

- Samuel Goldman
- o Priyanka Raghavan
- o Zhengkai Tu
- o Keir Adams
- o Herry (Tianyi) Jin
- o Ria Das
- o Katherine Lim
- o Jacob Yasonik
- o Saul A. Vega Sauceda

MLPNS
Machine Learning for Pharmaceutical Discovery and Synthesis
AMGEN [®] AstraZeneca AstraZeneca AstraZeneca
gsk janssen)
UNOVARTIS Prizer Sunovion
syngenta 🔑 秀 嘲 康 德 WuXi AppTec