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ABSTRACT: The discovery of functional molecules is an expensive and time-consuming
process, exemplified by the rising costs of small molecule therapeutic discovery. One class
of techniques of growing interest for early stage drug discovery is de novo molecular
generation and optimization, catalyzed by the development of new deep learning
approaches. These techniques can suggest novel molecular structures intended to
maximize a multiobjective function, e.g., suitability as a therapeutic against a particular
target, without relying on brute-force exploration of a chemical space. However, the utility of these approaches is stymied by
ignorance of synthesizability. To highlight the severity of this issue, we use a data-driven computer-aided synthesis planning program
to quantify how often molecules proposed by state-of-the-art generative models cannot be readily synthesized. Our analysis
demonstrates that there are several tasks for which these models generate unrealistic molecular structures despite performing well on
popular quantitative benchmarks. Synthetic complexity heuristics can successfully bias generation toward synthetically tractable
chemical space, although doing so necessarily detracts from the primary objective. This analysis suggests that to improve the utility of
these models in real discovery workflows, new algorithm development is warranted.

■ INTRODUCTION

Molecular design is one of the most fundamental challenges in
chemical science and engineering. This task is to identify one
or more molecules with a specific set of properties of interest,
such as binding affinity and drug-likeness for drug design.
High-throughput virtual screening (VS) is one widely used
strategy to coarsely optimize a molecular structure using a
discretized subspace of the whole chemical space.1 In VS, we
evaluate enumerated candidate molecules in terms of their
predicted properties of interest and ranked for follow-up
experimental validation. However, because we rarely know a
priori where the ideal molecule will be within the massive
design space of chemical space, there is a trend toward using
exceedingly large virtual libraries to increase the likelihood that
we will find promising candidates. Modern virtual libraries may
comprise hundreds of millions or billions of candidate
molecules,2 often generated through combinatorial enumera-
tion of commercially available building block compounds. Even
billions of compounds, however, represent a tiny fraction of
theoretically possible, pharmacologically relevant small mole-
cules, often cited as exceeding 1060 structures.3 Brute-force
virtual screening screening over a chemical space of this size is
clearly computationally intractable.
Recent developments in computer aided drug design

(CADD) techniques, especially in de novo molecular
generation and optimization methods, raise the hope of
removing this bottleneck.4 Generative algorithms are a class of
methods that propose molecular structures in a manner that
can be tailored toward a specific objective. There is a long
history of generative models in chemistry, many based on
genetic algorithms5 and the iterative construction of molecules
from molecular fragments.6 In the past decade, following on

the advent of Variational Auto-Encoders (VAEs)7 and
Generative Adversarial Networks (GANs),8 there has been a
flood of new deep learning (DL) methods for this task.9 Many
of these methods learn a mapping from a continuous lower-
dimensional real number space to a discrete chemical space.
Jointly trained with a structure−property regression, one can
obtain novel chemical structures conditioned on desired
properties. More usefully, combining generative models with
Bayesian optimization (BO), or directly using a heuristic
optimization algorithm (e.g., a genetic algorithm (GA) or tree
search (TS)), we can bias candidate generation toward the
functionality we desire. Deep generative models are trained on
a finite set of molecules to learn an underlying distribution of
chemical space, where interpolation and extrapolation produce
novel chemical structures. Enumerating every candidate
molecule is thus unnecessary, and applying these models
requires linear computational cost to generate multiple
molecular structures once trained. Further, the generative
algorithms can explore chemical space beyond the limited
beginning pool and provide novel chemical structures with
preferential intellectual property (IP) positions, whereas
molecules in VS are often pre-existing. In recent years,
generative models have been applied to various chemical
discovery problems and have shown promise as a useful tool
for the problem of molecular design.10
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However, a practical problem that obstructs the usefulness
of generative algorithms is that proposed molecular structures
may be challenging or infeasible to synthesize. In any realistic
discovery scenario, we will need to validate whether a proposed
molecule has the property profile we expect; even if our
computational models are infallible, we will need to
manufacture the molecule in order to apply it (e.g., as a
therapeutic, as a catalyst, as a component of a device). Libraries
for virtual screening can be constructed from commercially
available databases. They are often enumerated using well-
characterized reaction templates to try to ensure that
enumerated molecules are readily synthesizable. Lyu et al.
report an 86% successful synthesis rate among 51 top-ranking
molecules from a library comprising 99 million structures,
consistent with the claims of many chemical vendors.2

The situation is quite different in de novo molecular design,
especially when using deep generative methods. We expect
(and want) these models to explore molecular structures
beyond the ones they have been trained on, so they may
propose nonsensical structures that are unreasonable for
pharmaceutical purposes. There have been few studies
explicitly examining this problem, but some anecdotal evidence
suggests that compounds are not easily synthesizablemany
structures reported in papers indeed appear absurd. Bjerrum
and Threlfall examined 21 molecules proposed by their
recurrent neural network (RNN) model with Wiley’s
ChemPlanner and found a number of possible selectivity
issues in the proposed syntheses, indicating synthetic
difficulty.11 Sumita et al. filter generated molecules by requiring
that they be previously reported with at least one synthetic
route in SciFinder, which removes these models’ ability to

propose novel chemical structures.12 Zhavoronkov et al. select
only six molecules from 40 candidate structures based on
synthetic accessibility, even after filtering an initial list of
30,000 structures generated by a deep learning model.10

Current procedures for quantifying synthesizability are based
on (1) structure complexity and similarity or (2) synthetic
pathways. The structure-based approach usually involves
constructing a heuristic definition based on domain expertise
or chemical substructure diversity13,14 or designing a model
that can be fit to expert scores15−17 or reaction data.18,19 This
kind of method is widely used due to its ease of
implementation and low computational cost. However, two
similar structures with a single functional group transposition
can require substantially different synthetic routes (e.g., due to
the selectivity of chemical reactions or availability of specific
building blocks), which makes it challenging to fit a good proxy
score (see Figures S1 and S2 for one example). The most
convincing metric might be a direct scoring from a group of
experts on synthetic, medicinal chemistry, which has been used
as a ground truth to train models against.15−18 To have a group
of experts large enough to reach a nonbiased and stable value is
labor-intensive, hard to replicate, and not scalable.20

The second, more nuanced approach to measuring
synthesizability is to explicitly plan a synthetic pathway and
assess its likelihood of experimental validity. Synthetic
pathway-based approaches can incorporate more thorough
information about starting materials and chemical reactions,
which enables them to overcome the shortcomings of the
structure-based analysis. In this approach, a computer-aided
synthesis planning (CASP) program21 can be used to perform
the retrosynthetic analysis. The use of an explicit CASP tool

Figure 1. Schematic representation of approaches to address the challenge of synthesizability in molecular optimization: (a) virtual screening can
use a filtered database of candidates to ensure that they are all synthetically accessible, (b) standard molecular generation focuses on evaluation of
properties without regard for synthesizability, (c) a post hoc filter narrows down proposed candidates as a separate step from generation, (d) biasing
by training set aims to improve synthesizability by training generative models on synthetically accessible compounds, (e) biasing by heuristics uses
simple scalar proxies for synthesizability as part of the objective function, (f) biasing by a CASP oracle runs a full retrosynthetic expansion for
proposed molecules to modify the reward function in a reinforcement learning setting, and (g) explicit constraints attempt to restrict chemical
space to what is accessible using buyable building blocks and known synthetic transformations.
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makes it possible not only to capture the high “nonlinearity” of
synthesizability with respect to chemical structure but to
recommend actionable synthetic pathways. We see this as a
form of interpretability to verify why the molecule is believed
to be synthesizable, with which building blocks, and in how
many steps. Only a handful of studies have used a
retrosynthetic planning tool to analyze synthesizability.11,22−24

Its practical application in molecular design is not widespread
yet. Therefore, here, we analyze synthesizability of compounds
proposed through generative algorithms using our open-source
computer-aided retrosynthesis analysis tool, ASKCOS.25

We divide our analysis of the synthesizability of molecules
generated by de novo generative algorithms into evaluations of
distribution learning and goal-directed generation tasks
unoptimized and optimized molecules, respectively. Distribu-
tion learning models are meant to interpolate within a
chemical space comprised of a training set of molecules and
to generate new molecules with similar properties. Goal-

directed generation instead tries to generate new molecules
that maximize a black-box scoring function. There have been
an increasing number of algorithms of these two categories
proposed in recent years and a small number of studies that
benchmark these algorithms in terms of their ability to
generate novel, optimal molecules.26,27

We categorize the approaches one might take to ensure that
computationally designed molecules are able to be synthesized
in Figure 1. These represent combinations of (i) a database of
known or enumerated compounds, (ii) an evaluator, which
estimates the properties we are trying to optimize, (iii) a
generator function, which can propose new candidate
molecules, (iv) a synthesizability oracle that determines
whether it is straightforward to synthesize a given molecule,
and/or (v) a heuristic synthesizability estimator that provides a
computationally inexpensive scalar measure of synthesizability.
In this study, we focus on three major approaches to solving
the synthesizability problem: post hoc filtering (Figure 1c),

Figure 2. Synthesizability analysis of common data sets, distribution learning, and popular heuristics. (a) The number of synthetic steps required to
produce random sampled structures from each data set; error bars represent the standard deviation between random samplings of 300 molecules
for each batch, 3000 in total (except Sheridan’s data set). (b) The number of synthetic steps required to produce molecules generated by
distribution learning algorithms, trained on either MOSES or ChEMBL; error bars represent the standard deviation between 3 batches of
nonoverlapping generation, 300 molecules per batch. (c−e) The fraction of synthesizable compounds from each data set binned by heuristic score
and the number of molecules scored within each bin (excluding GDB).
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imposing a priori differences in training sets (Figure 1d), and
heuristic biasing (Figure 1e).

■ RESULTS
Synthesizability of Common Databases According to

ASKCOS. We first validate that the information returned by
ASKCOS is usefully correlated with synthesizability by
analyzing molecules from several standard compound libraries:
MOSES,26 ChEMBL,28 ZINC,29 Sheridan et al.,16 and
GDB1730 (see Methods for detailed descriptions of each
data set and the settings used for retrosynthetic analysis,
including the evaluation of commercial availability of building
blocks). Figure 2a shows the predicted number of synthetic
steps required to produce a random set of 3000 molecules
from each data set. The MOSES data set has the highest rate of
perceived synthesizability at 89.8%, consistent with its focus on
small lead molecules and exclusion of compounds with
“structural alerts.” Its parent set, ZINC, has a lower
synthesizability rate of 60.8%. The ChEMBL data set has a
higher rate of 68.3%; although it contains larger and more
complex structures than does ZINC, many have been
synthesized previously; among those that cannot be synthe-
sized are natural products that were extracted, not synthesized,
and tested for their biological activity. ChEMBL also contains
several directly purchasable compounds, second only to
Sheridan et al.’s data set of 1730 compounds. Unsurprisingly,
the exhaustively enumerated data set, GDB17, has the lowest
rate of synthesizability at only 3.5%. We also find that the
predicted number of reaction steps is correlated with expert-
provided scores (Figure S14). From these trends and the high
success rate of the MOSES database, we conclude that
ASKCOS’s retrosynthetic analyses are largely consistent with
our expectations of synthesizability, and it is appropriate to use
its predictions to benchmark the evaluation of molecular
generation.
Agreement between Synthesizability Heuristics and

ASKCOS. We next evaluate the agreement between several
heuristic synthesizability scores (length of SMILES, SA_-
Score,31 and SCScore19) and the results of ASKCOS. Because
retrosynthetic analysis can be time-consuming (tens to
hundreds of CPU-seconds), we would prefer to bias generation
by heuristics rather than by a CASP oracle (cf. Figure 1).
Figure 2c−e show the trend of synthesizability of structures in
different ranges of SA_Score, SCScore, and SMILES string
lengths. None of them can distinguish the synthesizable and
unsynthesizable compounds perfectly, but all exhibit a
decreasing trend as the heuristic score increases. The trend
is clearest for the SA_Score, followed by the SMILES length
and then the SCScore. This ordering is quantified in Figure S3,
which shows the area under the receiver operating character-
istic as if these heuristics were being used for binary
classification. The AUC values for the three methods in this
order are 0.87, 0.69, and 0.61. The slight shoulder around 5.5−
6.0 in Figure 2c is the contribution from the structurally
complex but commercially available compounds, highlighting
the difference between synthetic complexity and structural
complexity as discussed in ref 19. We note that the superiority
of the SA_Score over SCScore is not necessarily surprising
given their respective definitions (see Methods): the SA_Score
penalizes rare substructural fragments that are not widely
observed in PubChem, while the SCScore evaluates whether
one molecule is more or less likely to be a reactant than
another and is trained on reactions from Reaxys. The rarity of a

substructure indicates both that it is unlikely to appear in a
commercially available reactant and that it is likely challenging
to synthesize.

Synthesizability of Unoptimized Generated Mole-
cules. As alluded to above, distribution learning methods are
capable of generating “unoptimized” molecules that share
properties (in aggregate) with the database used for training.
Here, we evaluate methods implemented in the MOSES26

benchmarking set, which cover diverse approaches to the
molecular generation problem: a SMILES long short-term
memory (LSTM) model, a variational autoencoder (VAE),
and an adversarial autoencoder (AAE; see Methods). There
are more deep learning approaches for molecular generation
and optimization than can be compared here,9 so we focus on
these top-performing classes of approaches. In this task, we can
use post hoc filtering or training set biasing by separately
training distribution learning models on ChEMBL (less
synthesizable) and MOSES (more synthesizable).
Figure 2b shows the fraction of synthesizable molecules from

300 generated by each distribution learning method trained on
the ChEMBL and MOSES. We observe that the fraction of
synthesizable molecules is comparable to that of the training
set, while no method improves synthesizability relative to its
training set. The stark difference between results using MOSES
and ChEMBL suggests that a priori biasing by training on a
“more synthesizable” data set is a viable approach for
distribution learning algorithms. There is no one method
that is particularly superior to others. The high fraction of
synthesizable results further suggests that post hoc filtering is
not necessarily a bad approach (i.e., relatively few generated
molecules would fail a check for synthesizability). Note these
results pertain only to the synthesizability of generated results
and do not consider previously evaluated metrics of novelty,
uniqueness, and diversity as do Polykovskiy et al.’s analyses.26

As their and others’ analyses have shown, distribution learning
methods can successfully mimic the training data set with
respect to simple properties like molecular weight, calculated
partition coefficient, SA_Score, quantitative estimation of
drug-likeness, etc. We hypothesize that these models learn,
implicitly, what common functional groups and structural
motifs comprise these molecules and which tend to be
copresent, which is how they are able both to recapitulate the
distribution of scalar descriptorsas others have shownand
to recapitulate synthesizabilityas our new results show.

Synthesizability of Optimized Generated Molecules.
Our next analyses focus on goal-directed benchmarks, which
reflect the actual use-case for generative models. Here, we re-
evaluate the methods and objective functions evaluated by
Brown et al.’s Guacamol27 in terms of their synthesizability. As
detailed in the Methods, this includes three generative
algorithms (SMILES LSTM, SMILES GA, and Graph GA)
and 14 multiproperty objective functions (MPOs) that convert
a molecular structure to a scalar fitness score. As a baseline
method, we include a virtual screening approach, “Best from
Data,” where all candidates from either ChEMBL or MOSES
are evaluated to identify the top performers. In addition to post
hoc filtering and training set biasing, we can also bias
generation by modifying the objective function with a heuristic
synthesizability score. We multiply the original objective
functions (normalized between 0 and 1) with a quantitative
synthesizability metric (SA_Score or SCScore, also normalized
between 0 and 1). More details can be found in the Methods
section.
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We evaluate the effects of heuristic biasing both in terms of
the synthesizability of suggested molecules and in terms of the
primary objective function value. Figure 3 shows four examples

of how these metrics change when biasing with SA_Score,
initially trained on ChEMBL (Figure S5 shows the full results
of all methods, biasing strategies, training data sets, and
objective functions). Figure 3a shows a case where there is no
improvement in the objective function value of the top
synthesizable molecule, as the majority of molecules selected
from the data set are already synthesizable. Figure 3b shows a
case where heuristic biasing actually decreases the synthesiz-
ability of proposed molecules as well as their objective function
values. However, Figure 3c shows a dramatic success of
heuristic biasing, where none of the proposed compounds are
synthesizable in the absence of biasing; biasing leads to almost
all proposed compounds being synthesizable and, despite
doing so, does not significantly detract from the objective
function value (see the top compounds for this case in Figure
4a). The fourth case in Figure 3d shows only an incremental
increase in synthesizability upon biasing, but one that results in
a moderate increase of objective function value for the top
synthesizable compound (see the top compounds for this case
in Figure 4b).
In the full results (Figure S5), we find that the

synthesizability varies significantly between different methods
and objectives. Indeed, the total fraction of synthesizable
compounds in all methods for “hard” objectives without
biasing is 30.2% with ChEMBL and 32.7% with MOSES (see
Figure S6 for more details), excluding the direct sampling from
data set. Compared to distribution learning, the goal-directed
generation methods are less sensitive to the starting set of
molecular compounds. For several tasks (Figure S6), very few
or no compounds in the top 100 are synthesizable in the
absence of heuristic biasing, particularly when using the genetic
algorithms, illustrating the risk of relying on a post hoc filtering
strategy.
Examples in Figure 4a,b illustrate cases where no molecule

in the top 100 is synthesizable and heuristic biasing is required

to generate even a single feasible candidate. The compounds
remaining after filtering for synthesizability, if any, may have
low objective function values. In extreme cases, particularly the
unbiased proposal in Figure 4a, generated molecules contain
substructures that could easily be flagged by an expert-encoded
set of substructural rules. Such substructure filters are
commonly employed in virtual screening pipelines to identify
compounds with “undesirable motifs” (e.g., those that are
likely to interfere with biological assays and lead to unreliable
results32,33) and could be extended to include the most
frequently proposed “unsynthesizable” motifs.
Most cases in Figure S5 show that the synthesizability of the

top 100 compounds after biasing is quite high, often exceeding
the rate for ChEMBL. Generally speaking, the SA_Score
performs better than SCScore: the overall synthesizability for
hard objectives was improved from 30.2% to 80.2% or 55.4%
when biasing by SA_Score or SCScore, respectively, originally
trained on ChEMBL (Table 1). The superiority of the
SA_Score over the SCScore is not surprising given the trends
in Figure 2d,e. Nevertheless, the successful increase in
synthesizability validates the approach shown in Figure 1e,
but the increased synthesizability comes at the expense of the
objective function value of the top candidate. For some tasks,
there are decreases of over 0.2a significant difference for
these benchmark tasks. However, we note that the value of an
in silico objective function is completely inconsequential if the
molecule cannot be made and experimentally tested.
A fairer comparison can be made between the objective

function values of the top synthesizable candidates, i.e., after
post hoc filtering. Figure 4c,d shows two examples where the
objective of the top-1 candidate decreased, but the value of the
top-1 synthesizable candidate increased. That this is observed
in some cases (also see Figure S13) suggests a practical
workflow for molecular optimization: if only a few synthesiz-
able candidates (1−10) are desired, first optimize without
biasing and filter unsynthesizable suggestions; if the top
synthesizable candidates are worse than the top unsynthesiz-
able candidates, repeat the optimization while biasing with the
SA_score.

Discussion of Other Approaches. As described in Figure
1, there are more ways to improve synthesizability of de novo
molecular generation algorithms. One promising approach is to
bias the generation using a full CASP tool to evaluate
synthesizability, instead of a proxy score (Figure 1f). The
advantages are already described above; the disadvantage is the
computational expense. While ASKCOS finds pathways in a
few seconds for some molecules, we spend up to 1 min
evaluating each molecule to reduce the number of false
negatives.
Benchmarking for molecular optimization, in addition to

neglecting synthesizability, has largely neglected the number of
objective function calls and computational expense. When
using genetic algorithms for molecular optimization, we would
first select high scoring synthesizable compounds as the initial
set to propagate from a pool of up to millions of structures
(∼106) and then score, at each of hundreds of iterations
(∼103), hundreds of child compounds (∼103). In total, we
would require millions or at least hundreds of thousands of
calls to the CASP oracle. Reinforcement-learning-based
optimization methods that outperform Bayesian optimization
when using VAEs require one oracle call per iteration but
require hundreds of thousands or millions of iterations (e.g.,
MolDQN reports the use of 200k function calls34). One study

Figure 3. Dependence of goal-directed optimization performance on
heuristic biasing by the SA_Score using ChEMBL as the training
database, for four exemplary method-objective combinations. In each
plot, the green solid line represents the change of fraction of
synthesizable compounds in the top 100. Red solid lines represent the
change in the objective function value of the top synthesizable
molecule, while the dashed red line represents the change in objective
function value of the top molecule, regardless of its synthesizability;
dashed red lines may be occluded by solid red lines.
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by Korovina et al., who propose a method described in the next
paragraph, highlight several existing methods that all require
≥5000 evaluations for a single task compared to their 100. On
the basis of the machine learning community’s broader interest
in improving the sample efficiency of reinforcement learning
algorithms36 (thus fewer times calling the oracle) and CASP
tools becoming faster, the use of an explicit retrosynthetic
planner during optimization may become a computationally
viable strategy.
The final approach (Figure 1g) is to embed synthesizability

constraints in the generation algorithm itself, i.e., constrain the

search space to molecules that can be produced from available
building blocks. As early as 2003, Vinkers et al. described the
iterative optimization of molecular structure by selecting
building blocks to react with a growing molecular structure.37

More recently, Bradshaw et al.38 proposed a model called
MoleculeChef that generates a bag of reactants and uses a
forward reaction prediction software to obtain the final
products. Korovina et al.’s ChemBO similarly treats molecular
generation as a random walk on a directed (synthetic) graph
where each node is a molecule, and the parents of this node are
the reagents that produce the child molecule when
combined.35 These techniques are philosophically aligned
with our use of retrosynthetic analysis to evaluate synthesiz-
abilityboth try to use our collective knowledge of chemical
reactivity to dictate what reactions are possiblebut operate in
the forward synthetic direction. This makes them subject to the
same caveats that any CASP tool is subject to: their validity is
entirely dependent on the accuracy of their forward reaction
prediction engine, which can use either hand-coded rules or
algorithmically inferred rules. The greater the number of
synthetic steps we allow, the lower the chances that each
reaction will proceed as predicted. As this is essentially how

Figure 4. Examples of molecules from goal-directed optimization that were improved by heuristic biasing. Scores shown are the objective function
values that have been normalized to the interval [0, 1]. (a,b) Cases where no synthesizable compounds were found in the top 100 suggestions
without biasing, but at least one was found with either SA_Score or SCScore biasing. (c,d) Cases where the top structure found without biasing was
perceived as unsynthesizable and the use of heuristic biasing improved the objective function value of the top synthesizable structure.

Table 1. Fraction of Synthesizable Compounds in the Top-
100 Candidates Across All Goal-Directed Optimization
Tasks and All Methods, Demonstrating Successful Heuristic
Biasing

training
database

task
difficulty unbiased

biased by
SA_Score

biased by
SCScore

ChEMBL trivial 60.1% 91.0% 77.9%
hard 30.2% 80.2% 55.4%

MOSES trivial 63.5% 92.2% 78.8%
hard 32.7% 77.2% 58.0%
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virtual libraries are constructed, we would expect a similar rate
of success (anecdotally, 85% successful delivery of compounds
from a library enumerated with a single synthetic step).
Nevertheless, as the search space is directly constrained by
these rules, they may enable a more efficient exploration of
chemical space. We expect such algorithms to rapidly grow in
popularity as the accuracy of reaction prediction tools
improves.39,40

■ CONCLUSION

In this paper, we describe an analysis of the synthesizability of
de novo generative algorithms. We first examined common
chemical compound libraries and used ASKCOS to evaluate
their synthesizability. We next evaluated molecules proposed
by distribution learning and goal-directed generation methods,
with and without biasing by heuristic synthesizability metrics.
Distribution learning methods, provided they can learn the
chemical distribution of the training set well, seem to generate
molecules that are synthesizable with a similar frequency to
their training set. Goal-directed generation methods have a
significant risk of proposing unsynthesizable structures as their
top suggestions, particularly using the SMILES GA or Graph
GA methods, but occasionally there may be enough high-
performing, synthesizable molecules in the top 100 that post
hoc filtering (Figure 1c) is a viable strategy. In other cases, the
proposed molecules are so absurd that one immediately
recognizes why benchmarking these methods solely in terms of
their objective function value is insufficient (e.g., Figures S10
and S11). Biasing generation by training set synthesizability
(Figure 1d) works for distribution learning but does not have a
noticeable effect on goal-directed optimization tasks. For some
tasks, modifying the objective function with the SA_Score
leads to candidates that outperform those obtained through
post hoc filtering (Figure 4c,d and Figure S13). This heuristic
biasing (Figure 1e) almost always improves the synthesizability
of generated candidates but necessarily detracts from the main
objective function.
We acknowledge that the identification of a synthetic

pathway by ASKCOS is not a necessary or sufficient condition
for synthesizability, nor would the generation of molecular
candidates through forward synthesis prediction be a guarantee
that those reactions would work experimentally. CASP tools
for retrosynthesis and forward synthesis are imperfect. They do
not capture our entire knowledge of chemical reactivity and
may occasionally produce overly optimistic suggestions (e.g.,
with respect to selectivity). Further, the ability of CASP
programs to find pathways is sensitive to the precise database
of chemicals considered buyable and the settings one chooses
for the retrosynthetic expansion. Even with an imperfect CASP
tool like ASKCOS, however, we can obtain a meaningful
analysis of synthesizability of generated molecules.
Generative models have a tremendous potential to accelerate

molecular discovery. As we improve their ability to propose
synthesizable moleculeswhether by improving CASP tools
for post hoc filtering, developing new heuristics for synthesiz-
ability, efficiently sampling a CASP oracle to bias generation
with reinforcement learning, or designing new algorithms
explicitly constrained by predictions of chemical reactivity
their utility and relevance to practical discovery projects will
only increase.

■ METHODS

ASKCOS. ASKCOS is an open-source software framework
that integrates efforts to generalize known chemistry to new
substrates by learning to apply retrosynthetic transformations,
to identify suitable reaction conditions, and to evaluate
whether reactions are likely to be successful when attempted
experimentally.25,41 Data-driven models within ASKCOS are
trained on millions of reactions from the U.S. Patent and
Trademark Office (USPTO) and Reaxys databases. The core
retrosynthetic capabilities rely on the recursive application of
algorithmically extracted reaction templates encoded as
SMARTS patterns. Expansion is parallelized using an upper
confidence bound tree search as detailed in the original
publication. Importantly, ASKCOS has both programmatic and
graphical interfaces to enable thousands of compounds to be
processed without human intervention. The program makes
extensive use of RDKit.42

While the program offers flexible stopping criteria, we
require starting materials to be commercially available
according to a 2018 database of molecules from eMolecules
or Sigma-Aldrich with prices no greater than $100 per gram;
the full list is available in the ASKCOS codebase. This is a very
strict price limit in the context of drug discovery, so it warrants
two additional comments. First, one could consider most
molecules to be “commercially available,” in that some supplier
or contract research organization will agree to produce them at
some cost given sufficient lead time. Second, it is
straightforward to modify the database of molecules consid-
ered commercially available depending on each user’s price
tolerance and available chemical inventory.
To determine whether a molecule is “synthesizable,” we run

a retrosynthetic expansion using ASKCOS with the following
expansion settings: the maximum search depthlongest linear
sequenceis 9; the maximum branching rationumber of
unique precursors to consider at each disconnectionis 25;
the maximum wall time of expansion is 60 s; the maximum
cumulative probability for the target is 0.999; the maximum
number of templates to apply is 1000; the maximum price for
starting materials is $100/g as described above; the minimum
plausibility of reactionsevaluated by a binary classifier as a
“sanity check”is 0.1. We terminate the search as soon as a
pathway is found, rather than continuing to search for a more
optimal (e.g., shorter, cheaper) pathway. All retrosynthetic
analyses were carried out in an ASKCOS server on a debian
virtual machine running on Google Cloud with eight cores, 52
GB of memory, and no other background tasks.

Compound Databases. MOSES26 is an open database
included in the MOSES benchmarking platform that evaluates
distribution learning algorithms for drug discovery. The
database of 1.94 million structures represents a subset of the
4.6 million in the ZINC Clean Leads collection with molar
masses of 250−350 g/mol, fewer than eight rotatable bonds,
and a maximum XLogP of 3.5. Polykovskiy et al. filtered out
molecules containing charged atoms; atoms besides C, N, S, O,
F, Cl, Br, and H; cycles longer than eight atoms; and molecules
containing “structural alerts” from medicinal chemistry filters
and PAINS filters.
ChEMBL28 is a regularly updated, open access database

containing a large number of biologically relevant compounds
and associated assays (e.g., binding and ADMET). In our
experiments, we use ChEMBL release 24, which contains 15.2
million activity measurements for 1.8 million compounds.
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ZINC43 is an open database of commercially available (not
in-stock) compounds for virtual screening. ZINC contains over
230 million purchasable compounds in ready-to-dock, 3D
formats. We sampled molecules from ZINC-250k, which is a
widely used subset of ZINC1243 from Goḿez-Bombarelli et
al.44

Sheridan et al.16 refers to a set of 1730 unique and parseable
compounds taken from the 2575 unique molecules released by
Merck in their paper exploring a crowd-sourced definition of
molecular complexity. These molecules were drawn from
various public and Merck-internal sources as described in the
original publication.
GDB1730 is an open database containing 166.4 billion

enumerated molecules with up to 17 heavy atoms of C, N, O,
S, and halogens. The enumeration started from mathematical
graphs to form skeletons, aiming to cover size ranges
containing many drugs and typical for lead compounds. We
are sampling from its “Lead-like Set” of 800,000 compounds
with molar masses of 100−350 g/mol, CLogP of 1−3, and
without three- or four-membered rings.
Molecular Generation Algorithms. Random sampler is a

baseline approach to molecular generation and optimization
that randomly samples molecules (with replacement) from a
“training set” of known compounds.
Best f rom data represents the virtual screening approach to

molecular optimization, where all molecules from a “training
set” of known compounds are evaluated to identify the ones
with the highest scores.
LSTM45 refers to a Long−Short-Term Memory46 neural

network that is widely used in natural language processing. The
model is trained in an autoregressive way to predict the next
character of a simplified molecular-input line-entry (SMILES)
string. It can be iteratively fine-tuned to optimize molecules
toward a specific objective using a hill-climbing algorithm. We
evaluated the implementation in ref 27.
VAE44 refers to a variational autoencoder architecture that

learns to construct a bidirectional mapping between SMILES
represented chemical space and a finite-dimensional continu-
ous latent space. The architecture is devised to learn a
probabilistic generative model as well as its posterior,
respectively known as decoder and encoder. The two parts
are trained simultaneously by maximizing the evidence lower
bound (ELBO) of the marginal likelihood

p x z KL q z x p zELBO( , ) log ( ) ( ( ) ( ))q z x( )ϕ θ = [ | ] − | ∥θ ϕ|ϕ


where ϕ and θ are differential parameters and KL is the
Kullback−Leibler (KL) divergence. We evaluated the
implementation from ref 26.
AAE47 is another approach to train a SMILES-based

encoder−decoder architecture. Instead of KL regularization,
AAE is trained with an adversarial learning regularization that
matches the posterior distribution to a prior distribution. We
evaluated the implementation from ref 26.
SMILES GA48 is a population-based grammar evolution

algorithm. We evaluated Yoshikawa et al.’s model that adopted
a “chromosome” with context-free grammar of the SMILES
string so that crossover and mutation happen at the level of
SMILES tokens. Each “chromosome” can be decoded to a
SMILES string, and checked validity can be used. We evaluated
the implementation from ref 27.
Graph GA49 is another genetic algorithm that represents

molecules as graphs, rather than relying on SMILES strings.

The crossovers and mutations are performed by altering a
molecular graph directly, i.e., exchanging substructures and
hand-written substitution rules for mutation. We evaluated the
implementation from ref 27.

Objective Functions for Optimization. The suite of
objective functions we use for goal-directed optimization was
taken from Brown et al.’s benchmarking function sets.27

Evaluation is divided into “trivial” tasks and “hard” tasks
following the language of the original work. The trivial tasks
are named as such because almost all molecular optimization
methods can perform exceedingly well on them (thus they are
not suitable for the assessment of generative models), whereas
the hard tasks show greater variation as a function of the
method used. However, all of these objective functions are
relatively simple heuristic functions of molecular structure.
The trivial objectives we use include quantitative estimate of

drug-likeness (QED),50 a central nervous system (CNS)
MPO,51 an isomer of C7H8N2O2, and Pioglitazone MPO.
The hard objectives we use include Osimertinib MPO,
Fexofenadine MPO, Ranolazine MPO, Perindopril MPO,
Amlodipine MPO, Ranolazine MPO, Sitagliptin MPO,
Zaleplon MPO, Valsartan SMARTS, Scaffold Hop, and
Decorator Hop. Some MPO tasks try to identify molecules
dissimilar to the titular molecule but with similar properties;
other MPO tasks try to identify molecules similar to the titular
molecule but with “improved” druglikeness properties. We did
not include the benchmarks that measure the similarity to
commercial drug molecules and isomer benchmarks in hard
tasks because we think they are less meaningful for drug
discovery purposes. We refer readers to the list of benchmarks
in ref 27 for a full description of these objectives.

Biasing Techniques for Molecular Generation. Post hoc
filtering is the approach where a CASP tool is used to filter
unsynthesizable molecules suggested by an unbiased gener-
ation. We evaluate this approach by calculating the fraction of
molecules that would pass the ASKCOS filter and their
objective function values.
Training set biasing is the approach of starting with a

molecule database that has a higher fraction of synthesizable
compounds as the training set for deep learning methods or
the starting pool for genetic algorithms. In this paper, we use
ChEMBL (68.3% as tested) and MOSES (89.8% as tested) as
representative data sets with lower and higher synthesiz-
abilities, respectively. This approach can be used in both
unoptimized generation and optimized generation.
Heuristic biasing is the approach of modifying the main

objective function to penalize the generation of unsynthesiz-
able compounds. We apply a synthesizability function
multiplier, ranging from 0 to 1, to a prenormalized objective
function (also ranging from 0 to 1). Specifically, we use a form
of modified Gaussian and sigmoid function to rescale the
heuristic score x:
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We performed 30 iterations of Tree Parzen Estimator (TPE)
Bayesian optimization to determine the hyper parameters for
each score. The hyper parameters aimed to maximize the
fraction of synthesizable suggestions times the average of the

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c00174
J. Chem. Inf. Model. 2020, 60, 5714−5723

5721

pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c00174?ref=pdf


objective function for the top 10 molecules from a graph
genetic algorithm. We tested the biasing effect of SA_Score,
SCScore, and length of SMILES string, but meaningful
parameters could not be obtained for the SMILES string
heuristic. The multipliers we use are shown in Figure S4. This
approach can only be used in optimized generation.
SA_Score31 is a popular heuristic score for quantifying

synthesizability. It computes a score using a fragment-
contribution approach, where rarer fragments (as judged by
their abundance in the PubChem database) are taken as an
indication of lower synthesizability.
SCScore19 is a learned synthetic complexity score computed

as a neural network model trained on reaction data from the
Reaxys database. It was designed with synthesis planning in
mind to operate on molecules resembling not just drug-like
products but intermediates and simpler building blocks as well.
SMILES length is a very simple heuristic that associates

molecules with longer SMILES strings as an indication of
synthetic difficulty. The length of a SMILES string correlates
closely with the number of heavy atoms in a molecule (i.e.,
larger molecules are harder to synthesize) but is further
increased by the presence of formal charges, ring closures, and
defined stereochemistry.
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